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Abstract

Thresholded decisions turn probability errors into utility losses. Pooling-based

monotone calibrators such as isotonic regression are flexible and reliable but can col-

lapse distinct scores into the same probability on wide plateaus. We adopt a decision-

economic view: choose and tune a calibrator that reduces deployment cost by improving

reliability where it affects decisions and by preserving discrimination where it matters

(Elkan, 2001; Vickers and Elkin, 2006).

We contribute three pieces. First, a practical diagnostic suite—global bootstrap tie

stability, within-plateau concordance, minimum detectable difference, and progressive-

sampling diversity—with a decision rule that labels plateaus as supported, limited-data,

or inconclusive. Second, two adaptive calibrators: Relaxed PAVA, which allows

bounded local slack and reduces via a cumulative shift to one weighted isotonic projec-

tion; and density-aware smoothed isotonic, which smooths locally then projects

back onto the monotone cone. Third, a formal, convex cost- and data-informed

isotonic calibrator (CDI-ISO) that encodes economically weighted, variance-aware lo-

cal minimum-slope constraints and solves in O(n) time through a single isotonic pass

(Barlow et al., 1972; Robertson et al., 1988). We implement all methods in a scikit-

learn–compatible library and evaluate with proper scores and decision curves.

1 Introduction

A probabilistic predictor is calibrated when predicted probabilities match empirical frequen-

cies (DeGroot and Fienberg, 1983). Calibration matters because real deployments threshold
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probabilities: a small bias around the operating point can swing treatment, triage, or ap-

proval decisions (Niculescu-Mizil and Caruana, 2005; Jiang et al., 2012). Isotonic regression

is a popular post-hoc calibrator because it is flexible and enforces monotonicity (Zadrozny

and Elkan, 2002). Its strength is also a liability: by pooling adjacent violators into constant

blocks, isotonic often produces broad plateaus that erase within-block discrimination.

Economic lens. Thresholds encode asymmetric costs (Elkan, 2001). Decision-curve anal-

ysis (DCA) summarizes utility as net benefit versus threshold, with threshold odds t/(1− t)

weighting false positives relative to true positives (Vickers and Elkin, 2006). From this per-

spective, calibration is economically instrumental: better reliability near the operating point

reduces expected loss, while avoidable plateaus can undercut useful ranking.

Aim. We seek to (i) diagnose whether a plateau is supported by data or merely limited

by sample size, and (ii) adapt the calibrator locally when data and operating costs justify

recovering discrimination.

1.1 Contributions

Our organizing principle is simple: reduce decision cost without gratuitously destroying dis-

crimination.

• Diagnostics → action. A practical suite—global bootstrap tie stability, within-

plateau concordance (WPC; a Wilcoxon/Mann–Whitney–style concordance inside the

tied region), minimum detectable difference (two-proportion power near plateau bound-

aries), and progressive-sampling diversity—feeds a decision rule that labels plateaus as

supported, limited-data, or inconclusive. Each label maps to an action (keep, relax, or

smooth).

• Algorithms with linear-time solvers. (a) Relaxed PAVA allows bounded local slack

and reduces to a single weighted isotonic projection via a cumulative shift (inherits

O(n) complexity on a total order (Barlow et al., 1972; Robertson et al., 1988)); (b)

density-aware smoothed isotonic uses local windows, smooths, and reprojects to the

monotone cone (Ramsay, 1998; Meyer, 2008; Jiang et al., 2011).

• Formal cost- and data-informed calibration. CDI-ISO is a convex projection with

local minimum-slope constraints that are evidence-gated and economically weighted,

solved exactly by one isotonic pass. This unifies standard isotone (Zadrozny and

Elkan, 2002), relaxed isotone (cf. penalty-based Tibshirani et al., 2011 and ENIR Pak-

daman Naeini and Cooper, 2016), and minimum-slope isotone in a single formulation.
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2 Background and Related Work

We summarize how calibration is defined and used, how isotonic regression produces plateaus,

and how prior work relaxes or smooths monotone fits. We close with decision-aware per-

spectives and the openings they leave.

2.1 What calibration is and why it is used

A predictor is calibrated if among examples assigned probability p, a fraction p are positive

(DeGroot and Fienberg, 1983). Calibration matters because thresholding converts prob-

ability error into decision losses (Niculescu-Mizil and Caruana, 2005; Jiang et al., 2012).

Post-hoc methods fall into two families. Parametric approaches—Platt/logistic scaling

(Platt, 1999), beta calibration (Kull et al., 2017), and temperature/matrix/vector scaling

for deep nets (Guo et al., 2017)—fit low-parameter transformations. Nonparametric ap-

proaches—histogram binning (Zadrozny and Elkan, 2001) and isotonic regression (Zadrozny

and Elkan, 2002)—trade smoothness for flexibility and monotonicity.

2.2 Isotonic regression and the origin of plateaus

Univariate isotonic fits a nondecreasing sequence by minimizing weighted squared error sub-

ject to order constraints. The Pool Adjacent Violators Algorithm (PAVA) solves this in O(n)

time on a total order (Ayer et al., 1955; Barlow et al., 1972; Robertson et al., 1988). PAVA’s

solution is a right-continuous, nondecreasing step function: adjacent violators are merged

into contiguous blocks and each block is assigned its weighted mean, so all scores in a block

receive the same p̂ (Barlow et al., 1972; Robertson et al., 1988). These constant blocks are

the plateaus. They can reflect true flatness in the underlying calibration function, or they

can be artifacts of sparsity and noise that force pooling in finite samples; both behaviors are

observed in practice (Zadrozny and Elkan, 2002).

2.3 Relaxing or smoothing monotone fits

Two strands try to mitigate over-coarse plateaus while retaining monotonicity. Relaxations

penalize violations instead of forbidding them. Nearly-isotonic regression tunes a penalty to

trade bias and variance (Tibshirani et al., 2011); ENIR calibrates by ensembling near-isotonic

fits (Pakdaman Naeini and Cooper, 2016). Smooth monotone models impose smoothness

alongside monotonicity via basis functions and constraints (Ramsay, 1998; Meyer, 2008); in

calibration, “smooth isotonic” tempers stepwise fits with local smoothing before reimposing
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monotonicity (Jiang et al., 2011). These approaches choose how much to relax or smooth,

but not where it is justified by data or why it matters economically.

2.4 Decision-aware perspectives

Cost-sensitive learning formalizes how false-positive/false-negative costs move the operating

threshold (Elkan, 2001). DCA summarizes net benefit versus threshold using the odds t/(1−
t) to weight false positives (Vickers and Elkin, 2006). These tools clarify which thresholds

matter, but they do not change the calibration mapping itself.

Openings. We identify three gaps: (i) practical diagnostics that separate genuine from

data-limited plateaus; (ii) local, evidence-based mechanisms that break ties only where sup-

ported; and (iii) integration of decision costs into the calibration mapping, so recovering

discrimination is done where it improves utility.

3 Problem Setup and Decision-Economic Framework

Let s denote model scores, g(s) ∈ [0, 1] the calibrator, and π(s) = P(y=1 | s) the (unknown)
truth. Thresholding at t yields a decision a ∈ {0, 1}. DCA defines net benefit

NB(t) = TPR(t)π − FPR(t) (1− π)
t

1− t
,

where t
1−t

are threshold odds (Vickers and Elkin, 2006). We report NB curves to connect

calibration to utility.

For model selection we consider

J (g;λ, T ) = E[S(y, g(s))] + λEt∼T [DiscLosst(g)],

with S a proper score (Brier or NLL) (Gneiting and Raftery, 2007). The term DiscLosst

penalizes ties/ranking loss localized near threshold t (e.g., 1 − WPC inside a plateau that

covers t). We use J to guide hyperparameters; we do not claim Bayes-risk optimality.

4 Plateau Diagnostics

Let (si, yi) be calibration data sorted by si and p̂i = g(si) the fitted probabilities.

Definition 1 (Plateau) A plateau is a maximal index interval P = [is, ie] with p̂is = · · · =
p̂ie. We summarize P by its score span [smin, smax], size |P |, and label variance.

4



Global bootstrap tie stability. Resample the entire calibration set (optionally stratified

by score quantiles), refit g(b), and evaluate g(b) at the observed scores in [smin, smax]. Stability

τ is the fraction of bootstraps with empirical range < ϵ on that span; stable plateaus persist

under global refits.

Within-plateau concordance (WPC). With P+ and P− the positives/negatives in P ,

WPCP =
1

|P+||P−|
∑
i∈P+

∑
j∈P−

1{si > sj},

with a Wilcoxon/Mann–Whitney test against 0.5 (ties scored 0.5) to detect residual ranking.

Minimum detectable difference (MDD). At P ’s boundaries, a two-proportion power

calculation estimates the minimum ∆ = µ1 − µ0 detectable at level α; large MDD implies

low power to distinguish flatness from slope.

Progressive-sampling diversity. Fit isotonic on subsamples of size n and track a tie met-

ric (or unique-value ratio). Increasing curves suggest additional data would reduce plateaus.

Decision rule. Supported : high τ , WPC ≈ 0.5, small MDD. Limited-data: low τ or WPC

far from 0.5 or large MDD. Inconclusive: otherwise. Thresholds are tuned on held-out

validation to avoid optimism.

5 Methods

5.1 Relaxed PAVA: local slack with O(n) reduction

Standard PAVA solves minz1≤···≤zn

∑
i wi(yi− zi)

2 in O(n) time on a total order (Ayer et al.,

1955; Barlow et al., 1972; Robertson et al., 1988). We allow bounded local violations by

imposing adjacent-difference lower bounds

zi+1 − zi ≥ Li, Li ≤ 0.

Data-adaptive Li can come from adjacent block-mean differences (percentile rule) or from a

variance-aware bound

Li = − zα

√
p̂(1− p̂)

(
1
ni

+ 1
ni+1

)
,
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where p̂ is the pooled rate of neighboring blocks and ni their sizes. A cumulative shift

Ri+1 = Ri +Li reduces the problem to a single weighted isotonic projection on y′i = yi −Ri,

with solution z⋆i = u⋆
i + Ri; clipping to [0, 1] preserves monotonicity because clipping is

non-decreasing (Barlow et al., 1972; Robertson et al., 1988).

5.2 CDI-ISO: cost- and data-informed isotonic

We encode economically weighted, variance-aware minimum slope near operating thresholds

and allow variance-aware relaxation elsewhere. Let ∆i = zi+1 − zi. We solve the convex

projection

min
z∈Rn

n∑
i=1

wi(yi − zi)
2 s.t. ∆i ≥ Li (i = 1, . . . , n−1), (1)

with Li = ϕi − εi. Here ϕi ≥ 0 is an economically weighted minimum slope near thresholds;

εi ≥ 0 is a variance-aware relaxation elsewhere.

Constructing Li. Let s̄i = (si + si+1)/2 and define economics weights

wecon
i = Et∼T [Kh(|s̄i − t|) ],

with triangular kernel Kh (half-width h) concentrating mass near thresholds of interest (from

cost ratios or DCA Elkan, 2001; Vickers and Elkin, 2006). For data evidence, compute a

lower confidence bound for adjacent block differences using the pooled standard error:

∆LCB
i =

(
p̂i+1 − p̂i

)
− zα

√
p̂(1− p̂)

(
1
ni

+ 1
ni+1

)
.

Define

ϕi = γ wecon
i [∆LCB

i ]+, εi = (1− wecon
i ) zα

√
p̂(1− p̂)

(
1
ni

+ 1
ni+1

)
,

with γ ∈ [0, 1] setting a global slope budget; if ∆LCB
i ≤ 0 we set ϕi = 0 (no enforced slope

without evidence).

Linear-time solver. Let R1=0, Ri+1=Ri+Li, and set ui = zi − Ri, y
′
i = yi − Ri. Then

(1) reduces to

u⋆ = arg min
u1≤···≤un

∑
i

wi(y
′
i − ui)

2, z⋆i = u⋆
i +Ri,

which is a single weighted isotonic projection solvable in O(n) time on a total order (Barlow

et al., 1972; Robertson et al., 1988). Clipping z⋆ to [0, 1] preserves monotonicity.
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5.3 Density-aware smoothed isotonic

We first smooth locally, then project to the monotone cone: (1) choose a kNN/quantile

window Wi around si; (2) apply local regression to obtain ỹi (clip to [0, 1]); (3) run a

monotone projection (PAVA) on ỹ to obtain ŷ smooth = Πmono(ỹ) (Ramsay, 1998; Meyer,

2008; Jiang et al., 2011). CDI-ISO can replace the final projection when minimum-slope

constraints are desired.

6 Theory: scope and guarantees

Feasibility and complexity. Weighted PAVA on a total order is O(n) (Barlow et al.,

1972; Robertson et al., 1988). The shift-to-PAVA reduction preserves this complexity and

ensures feasibility for any real Li; clipping to [0, 1] preserves monotonicity.

Power near plateaus. Let boundary means be µ0, µ1 with ∆ = µ1−µ0. A Hoeffding-style

back-of-the-envelope suggests that detecting ∆ > 0 with error ≤ δ requires local effective

sample size O(log(1/δ)/∆2). This is a heuristic for interpreting diagnostic power, not a

minimax rate.

7 Conclusion

Economics-guided diagnostics and CDI-ISO help practitioners keep calibration honest with-

out sacrificing discrimination where it affects decisions. By encoding evidence- and cost-

informed local constraints in a convex projection with a linear-time solver, we make it prac-

tical to calibrate where it counts.
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A Optional note on binomial intervals

For constructing ∆LCB
i one can replace the normal-approximation SE with Wilson-style in-

tervals, which have better finite-sample behavior; see Brown, Cai, and DasGupta (2001). If

you prefer to avoid extra dependencies, the normal approximation used in the main text is

consistent with standard practice.
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