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1 Motivation and Background

Modern machine-learning models often appear to generalize well when measured by held-
out accuracy, but they can still fail unexpectedly under distribution shifts, adversarial per-
turbations or fairness criteria. Ribeiro et al. (2020) observed that traditional evaluation
overestimates performance because train/validation/test splits share similar biases. Inspired
by behavioral testing from software engineering, they proposed CheckList, a task-agnostic
evaluation matrix consisting of linguistic capabilities and test types (Ribeiro et al., 2020).
Capabilities (e.g., vocabulary, negation, named–entity recognition) correspond to phenom-
ena that a model should handle, while test types check how predictions behave under specific
perturbations. The three core test types are:

• Minimum-Functionality tests (MFTs). Simple examples designed to probe a
specific behavior; they detect when a model uses shortcuts instead of mastering the
capability (Ribeiro et al., 2020).

• Invariance tests (INV). Label-preserving perturbations that should not change the
model’s prediction (Ribeiro et al., 2020).

• Directional Expectation tests (DIR). Perturbations that should change the label
in a known direction, e.g., appending “You are lame” to a positive tweet should decrease
the sentiment score (Ribeiro et al., 2020).

By decoupling evaluation from implementation, CheckList reveals failure modes overlooked
by aggregate metrics (Ribeiro et al., 2020). However, CheckList focuses on testing rather
than training. This paper explores whether behavioral and causal assumptions can be in-
corporated into the loss function and training data to improve robustness and fairness, and
whether such ideas generalize beyond NLP.
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From a causal-inference perspective, spurious associations arise because the model
learns from correlations rather than causal relations. Negative controls are well-established
tools in epidemiology: researchers design exposures or outcomes that cannot plausibly be
causally related to the variable of interest but share the same confounders. Observing an
association on a negative control suggests residual confounding (Lipsitch et al., 2010). In
experimental biology, negative controls include “inert substance” experiments where the
active ingredient is left out; any observed effect under these conditions implies a spurious
mechanism (Lipsitch et al., 2010). These ideas motivate adding falsification tests to machine–
learning pipelines—introducing inputs that should not affect the prediction and penalizing
the model when they do.

2 A Unified Loss Framework

Consider a supervised learning task with input x and target y. A trained model f(x)
maps inputs to predictions (probabilities for classes). Extending the behavioral and causal
considerations above leads to a composite loss:

Ltotal = Ltask + λinv Linv + λdir Ldir + λfals Lfals. (1)

• Task loss (Ltask). The standard cross–entropy or mean–squared error encourages
correct predictions.

• Invariance penalty (Linv). For a label–preserving perturbation x̃ (analogous to
CheckList’s INV test), penalize the absolute difference in the model’s outputs:

Linv = Ex

[∣∣f(x)− f(x̃)
∣∣]. (2)

This encourages the model to be insensitive to spurious changes such as swapping
gendered pronouns. Garg et al. (2019) use a similar penalty to promote robustness to
identity-terms.

• Directional penalty (Ldir). For a perturbation x′ that is expected to alter the target
in a known direction (DIR tests), use a margin–ranking loss:

Ldir = Ex ℓranking
(
f(x), f(x′)

)
, (3)

where ℓranking(p, q) = max{0, p − q + γ} if the perturbation should lower the score,
and max{0, q − p + γ} if it should raise it. This enforces monotonic behavior when
sentiment is flipped or additional evidence is provided (Ribeiro et al., 2020).

• Falsification (negative-control) penalty (Lfals). Inspired by epidemiological neg-
ative controls, design negative-control inputs xneg that share confounders but should
not influence the output. Examples include adding irrelevant words (“table,” random
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numbers) to text or inserting backgrounds in images that are unrelated to the task.
The penalty

Lfals = Ex

[∣∣f(x)− f(xneg)
∣∣] (4)

discourages the model from using these cues; it generalizes the INV penalty to include
variables expected to have zero causal effect (Lipsitch et al., 2010).

2.1 Data Augmentation and Synthetic Interventions

Implementing these losses requires mapping inputs to their perturbed counterparts. Two
principles guide this process:

1. Label–preserving perturbations. These reflect invariances. In NLP, examples
include swapping synonyms, changing pronouns, altering named entities, or adding
typos. In computer vision, this could involve random cropping, brightness adjust-
ments, or style transfers that preserve the object. However, invariance is only ap-
proximate—balancing pronouns may remove gender bias but does not address other
confounders.

2. Causal perturbations. These represent interventions on the true causal features. In
sentiment analysis, flipping adjectives from “amazing” to “terrible” or negating verbs
flips the label. In CV, identifying causal features is harder: is a dog’s shape causal or
its color? Studies show that standard CNNs are strongly biased toward textures rather
than shapes (Geirhos et al., 2019). Creating stylized training images that alter textures
while preserving shape can increase shape bias and robustness (Geirhos et al., 2019).
Synthetic interventions might involve style transfer to change textures, or generating
3D models to change viewpoint.

3. Negative controls. These require variables that share the same confounding structure
but have no causal relationship. In NLP, one can append random neutral clauses (“by
the way, the sky is blue”) or numeric strings. In CV, backgrounds, lighting or random
overlays can act as negative controls; if the model’s prediction changes significantly,
it is exploiting spurious cues. Designing effective negative controls demands domain
knowledge to ensure they are truly unrelated to the task.

2.2 Extended Falsification and Impossibility Checks

Negative controls typically intervene on the inputs—they modify the text or image in ways
that should not change the true label. A complementary strategy is to introduce auxiliary
tasks or edits that should not be causally affected by the original input and to penalize any
association. Two examples illustrate this idea:
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Negative-control outcomes. In causal inference, a negative–control outcome is a vari-
able that cannot plausibly be caused by the exposure but may share the same unobserved
confounders(Lipsitch et al., 2010). In our setting, we can simulate such outcomes by pairing
each training example with a proxy label that is independent of the input. For instance,
alongside the sentiment of a movie review, we might ask the model to predict the sentiment
of an unrelated filler sentence or the parity of a random number appended to the input.
Because there is no causal relationship between the review and this auxiliary target, the
expected association is zero. If the model’s predictions on the negative–control outcome
correlate with the true label, this indicates reliance on spurious features. One can therefore
add a penalty term

Lnc out = Corr
(
faux(x), y

)2
(5)

that measures the squared correlation between the auxiliary predictions faux(x) and the pri-
mary target y, and encourage it to be small. When implementing this idea, care must be
taken to ensure the auxiliary task shares the same confounders as the primary task—otherwise
the test loses its diagnostic power.

Impossible-effect checks. Whereas directional tests expect monotonic changes in pre-
diction, impossible effect checks probe the model’s confidence on logically inconsistent or
self–contradictory inputs. Inspired by falsification tests in experiments, these examples com-
bine cues that ought to cancel each other out. For instance, the sentence “This movie was
wonderful but I hated it” mixes a strongly positive adjective with an explicit negation. A
well–behaved sentiment classifier should either output a neutral prediction or at least exhibit
uncertainty, not assign extremely high or low probabilities. Similarly, in vision, one might
overlay an object with a contradictory label (e.g., placing a dog icon on a picture of a cat) and
expect the classifier’s confidence to drop. Such examples can be generated systematically to
cover different degrees of contradiction. A simple way to enforce appropriate behavior is to
penalize high confidence on these inputs with a hinge loss on the predicted logit magnitude:

Limposs = Eximp

[
max{0, |f(ximp)| − τ}

]
, (6)

where ximp denotes an impossible–effect example and τ is a confidence threshold. This
term discourages the model from making overly confident predictions when the evidence
is contradictory. Designing realistic contradictions without introducing unnatural artifacts
requires domain knowledge; nonetheless, such checks offer a principled way to probe whether
the model respects logical constraints. Both Lnc out and Limposs can be incorporated into the
overall objective with their own weights (e.g., λnc out and λimposs) when balancing robustness
against the primary task performance.
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3 Theoretical Underpinnings and Limitations

3.1 Causal Identification Assumptions

The above framework implicitly assumes we know which features are causal for the task. In
practice, this may not hold:

• Ambiguity of causal features. In images, is the presence of hands in a dog picture a
confounder or part of the causal mechanism? The computer–vision literature notes that
models may latch onto co–occurring elements (human hands, backgrounds, textures)
as confounders (Wang et al., 2021). Without manual annotation or causal models, it
is difficult to determine whether shape or color is the relevant causal feature.

• Partial coverage of confounders. Balancing pronoun usage (e.g., equal numbers
of sentences with “he” and “she”) reduces gender bias but does not control for other
correlated attributes such as occupation or socio-economic terms. Synthetic data may
inadvertently introduce artifacts that the model learns instead.

• Negative-control validity. For negative controls to detect confounding, they must
share the same confounders as the primary exposure but not causally affect the outcome
(Lipsitch et al., 2010). Constructing such variables in high–dimensional domains like
images is challenging; backgrounds may not share all confounders, and random overlays
could introduce new ones. Falsification penalties therefore provide at most partial
assurance.

• Model capacity and over-regularization. Adding multiple penalties may degrade
performance if hyperparameters are not carefully tuned. A high falsification weight
can suppress reliance on legitimate but correlated features.

• Generalization beyond NLP. While invariance and directional penalties readily
map to textual tasks, designing meaningful interventions in CV or speech requires
domain–specific techniques (e.g., style transfer, 3D rendering, audio pitch shifting).
The absence of clear linguistic structure makes it harder to interpret and control con-
founders.

3.2 Connections to Existing Work

This framework unifies several prior ideas:

• Robustness and adversarial training. Many robustness techniques augment train-
ing with perturbed inputs, penalizing changes in predictions. Counterfactual logit
pairing and invariant risk minimization are specific instances of the invariance penalty
(Garg et al., 2019).
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• Learning to rank and margin losses. The directional loss uses a margin–ranking
formulation common in information retrieval (Herbrich et al., 2000). CheckList’s DIR
tests motivate this by treating certain perturbations as “better” or “worse” evidence
(Ribeiro et al., 2020).

• Causal debiasing in CV. Causal methods for CV often attempt to separate causal
features (object shape, salient regions) from spurious correlations (background, tex-
ture). Techniques such as the Causal Attention Module (CaaM) model confounders
in an unsupervised manner to improve robustness (Wang et al., 2021). Interventional
few–shot learning removes confounding from pretrained representations by backdoor
adjustment; such methods illustrate how causal reasoning can improve visual recogni-
tion (Wang et al., 2021).

• Negative controls in causal inference. The falsification penalty echoes epidemi-
ological practice of repeating experiments under conditions expected to yield a null
result (Lipsitch et al., 2010). Observing a difference signals confounding or measure-
ment error.

4 Illustrative Examples

4.1 Sentiment Classification

Suppose we train a sentiment classifier. For each training sentence x with label y:

• Label–preserving perturbations: swap “he” with “she,” replace location names,
introduce typos. Compute Linv by comparing f(x) and f(x̃) to encourage invariance.

• Directional perturbations: flip sentiment–laden adjectives (e.g., “wonderful”→“terrible”)
or add clauses (“I thought it was bad”). Use Ldir to enforce monotonic decreases or
increases as per DIR tests (Ribeiro et al., 2020).

• Negative controls: append irrelevant phrases (“by the way, I saw a table”) or random
numbers that share syntactic structure but no sentiment. Penalize deviations between
f(x) and f(xneg).

This combination trains the model to be robust to spurious correlates, sensitive to causal
changes, and insensitive to irrelevant information.

4.2 Computer Vision

Consider a dog–breed classifier. Potential interventions include:

• Label-preserving perturbations: random cropping, color jitter, background re-
placement, or stylized images that preserve the dog’s shape but alter texture. These
correspond to invariance tests.
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• Directional perturbations: flipping between different breeds is harder, but one
could modify the dog’s ear shape or fur length in a simulated environment to create
examples of another breed; the classifier’s confidence should decrease.

• Negative controls: add random patches or overlay unrelated objects (e.g., a small
colored square) that should not affect the breed. If the classifier’s prediction changes,
it signals reliance on spurious textures or locations. Researchers have shown that
ImageNet–trained CNNs are biased toward recognizing textures rather than shapes
(Geirhos et al., 2019); training on stylized images increases shape bias and robustness
(Geirhos et al., 2019).

5 Conclusion

Bringing together behavioral testing, causal inference and negative–control principles offers
a promising framework for building more robust and fair machine–learning models. Check-
List highlights the need for comprehensive unit tests across capabilities and perturbations
(Ribeiro et al., 2020). Causal inference reminds us to distinguish genuine causal features
from spurious correlations and to use negative controls to detect confounding (Lipsitch et al.,
2010). The proposed composite loss integrates these insights by penalizing deviations under
label–preserving perturbations, enforcing directional behavior when causal features change,
and adding falsification penalties to discourage reliance on irrelevant cues.

However, this approach rests on assumptions that are often difficult to satisfy: iden-
tifying causal features, designing realistic perturbations, ensuring negative controls share
confounders without introducing new ones, and tuning multiple hyperparameters. In high–
dimensional domains like images or audio, constructing meaningful interventions requires
sophisticated generative models and domain expertise. Thus, while this framework unifies
existing ideas and suggests directions for improving robustness and fairness, it should be
applied with caution and complemented by careful domain–specific analysis.
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