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Abstract

We study regression on per-row trait shares when item labels are costly. Rows are units
(people, devices, firms), columns are items (domains, products, apps), and each item carries a
latent binary trait. The statistical estimands are: (i) the vector of row shares y = (y1,. .., yn) and
its functionals (e.g., the mean), and (ii) the population OLS coefficient vector 8* = (X T X)71X Ty.
We use item—sampled Horvitz—Thompson (HT) estimators for row shares. HT delivers row-wise
unbiasedness and therefore design—unbiased OLS under any sampling design independent of the
unknown labels. We then make explicit what HT does not guarantee: because the same sampled
items affect all rows, errors are shared across rows; the empirical distribution of estimated shares
is a noisy convolution of the truth; and realized OLS variance is governed by the X-aligned
component of the error. We propose two complementary, convex design objectives: regression-SE
control, which targets the X-aligned error that moves OLS, and row-SE control, which guarantees
per-row precision. Both admit prevalence—aware tightenings when at most an « fraction of
items can be positive. We define concrete designs (HT-UNIFORM, HT—||g||, HT-A—OPT, and
min-labels variants) and give a procedure to turn inclusion probabilities into an explicit list of
items to label via balanced fixed-size sampling. Simulations show that A-optimal regression
designs substantially reduce coefficient RMSE at a given budget; matching the same regression
variance while enforcing per-row guarantees typically requires more labels; and balancing further
lowers realized variance without sacrificing unbiasedness.

1 Setup, HT guarantees, and limits

Let C = (c;5) € RY*™ be counts, T; = Y_7" | ¢;j, and the row share
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Let X € R"*P and define the OLS estimand
B* — (XTX)leTy'

We sample items with inclusion probabilities 7; € (0, 1] and indicators I; ~ Bernoulli(7;) that are
independent of the unknown labels a = (ay,...,a;). The item—wise Horvitz—Thompson estimator
of the share is (Horvitz and Thompson, 1952)
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Because E[I;/m;] = 1 and T; is fixed, E[y;] = y; for every 4, hence

E[B] = (X "X)"' X TE[f] = (X X)X Ty = g*.



HT is applied over items (the finite population), not rows; each y; is a linear functional of a. Rows
with T; = 0 are excluded (or y; defined and excluded from regression).

What HT does not guarantee. The same item draws enter every row, so errors are shared across
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Consequently, the empirical distribution of 7 is the true distribution convolved with design noise; HT
guarantees unbiased means and unbiased OLS, not unbiased quantiles. For 3, only the X-aligned
error matters:

B-B =(X"X)"'X"Tu

For inference, design—based SEs (or, conservatively, item—cluster robust SEs) should be used; see
§6. If labels suffer misclassification (sensitivity/specificity # 1), HT is unbiased for the noisy trait;
label-error corrections are then required for consistency in 5.

2 Intuition: which items move OLS?

Define item j’s row—normalized exposure, its projection on the regression space, and its OLS
influence weight:

v; = %’ ERY, g =Xy eR’, w;=g] (X X) g;=0v] X(X X)X Tv; >0,

Under independent item sampling,
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We adopt the whitened A—optimal criterion (Kiefer, 1959)

Alrr) = (XTX)"V2X T Var(u) X (X T X)71/2,

whose trace bounds as
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Interpretation. Items with large w; are the ones whose noise projects strongly onto X'; leaving them
unlabeled inflates OLS variance. The fixed-budget optimum will therefore sample with 7; oc | /wj.

Remark on metrics. One could minimize tr Var(g) directly, which weights items by g]—-r (XTX)2g,.
We fix the whitened trace above for a consistent criterion across the paper; both choices yield
square—root allocations and convex programs.



3 Two convex design objectives

Regression—SE control (target the X—aligned error). Two equivalent formulations:

. w;
min Zj: ﬂ—j s.t. zj:m =K, Tpin <7 <1, = mj o Jw; (clamp to [mmin, 1]),

or
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Both are convex; both admit heterogeneous label costs by minimizing » 5 €T which tilts the KKT

solution to 7; o< y/w;/c;. The inclusion floor mmi, > 0 ensures HT is well-defined for any item that
can affect the estimators (i.e., whenever some g;; > 0 below).

Row—SE control (guarantee per—row precision). Let ¢;; = (¢;;/7;)?. Under Poisson sampling,
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Given tolerances ¢; > 0 and i > 0,
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which is convex because 1/7 is convex and g;; > 0. With costs ¢; > 0, minimize ) ; ¢jmj. The KKT
shape (ignoring box constraints) is
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then clamp to [mmin, 1]. Extremely small T; can force large budgets for tight ¢;; choosing ¢; < 1/v/T;
equalizes effort per effective observation.

Prevalence—aware tightening. If at most an « fraction of items are positive (M = [am]),
replace sums by the sum of the M largest terms using the convex epigraph identity

M
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a standard trick in convex optimization (see Boyd and Vandenberghe, 2004). Use t; = (1/7j; — 1)w;
for regression-SE and t;; = (1/m; — 1)g;; for row-SE. This insures against the worst am items while
preserving convexity. If prior probabilities Pr(a; = 1) are available, an expected-risk variant replaces
a,? by Pr(a; = 1), yielding another convex program. For minimax/partial-ID intuition, see Manski
(2003).



4 Designs used in experiments

All designs below use the same estimator (HT shares over items); they differ only in how 7 is chosen.

HT-UNIFORM (fixed budget K): m; = K/m (clamped), then sample a fixed-size set of K items.
HT|lg|| (fixed K): m; o< [|gj][2; clamp and rescale so }_, m; = K.

HT-A-Opr (fixed K): m; o< \/wy; clamp and rescale so ), m; = K.

MIN-LABELS (REG-SE CAP): solve min ), 7j s.t. Y5 w;/mj < p? + 32 wj and Tin < 75 < 1.
MiIN-LABELS (ROwW—SE CAPS): solve (2) (optionally joint with the regression cap).

PREVALENCE—AWARE variants: in either program, replace the relevant sum by the top—M
aggregate via the epigraph.

5 From probabilities to a concrete list of items to label

Solving any program yields inclusion probabilities 7* = (77, ..., 7}, ). To produce an explicit labeling
list:
1. Deterministic picks. Include all items with 77 > 0.99. Let K = round(d_; ) and Kem =

K —#{j : 7; > 0.99}.

. Balanced fixed—size draw. On the rest, draw exactly Kien, items with first—order inclusions

7* and auxiliaries g; (or [g;;1]). A standard choice is the cube method (fixed-size phase) or any
conditional-Poisson scheme with balancing (Deville and Tillé, 2004). This targets
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shrinking the realized X "u for any a.

Estimation. Use HT weights 1/ 77;‘» when computing shares; this preserves exact design—unbiasedness.
(Optional: a post—sampling calibration step can further reduce variance at the cost of a negligible
finite-sample bias (Deville and Sérndal, 1992).)

Adaptive sampling caveat. If sampling proceeds in waves using already observed labels a;, the final
inclusion probabilities must reflect the adaptive design for HT to remain unbiased.

6 Inference and variance estimation

Under independent item sampling, A(7) provides a conservative covariance bound for whitened
coefficients; for without-replacement fixed—size designs, Sen—Yates—Grundy variance formulas with
joint inclusions (7j;) yield tighter design-based variance estimators for HT totals and, by the delta
method, for 8 (Sen, 1953; Yates and Grundy, 1953). In practice:

Report design—based SEs using g(r) or a SYG estimator adapted to the actual design.

As a conservative check, use item—cluster robust SEs for OLS on ¥ (errors are shared across rows
via items).



e Efficiency upgrade: generalized least squares (GLS) with an estimated 3 ~ Var(u), i.e.,
Bors = (X7 X)X Ty,

is unbiased (design—based) and can dominate OLS when shared-—noise is strong; 3 can be
approximated under the Poisson bound or via a fixed—size SYG approximation.

Balanced /fixed—size designs induce negative dependence among draws and reduce variance relative
to Poisson; our Poisson—based caps are therefore conservative.

7 Simulation evidence (brief)

On synthetic data (n = 400, m = 800, p = 6), HT-A-OpPT dominates HT-UNIFORM and
slightly improves on HT—||g|| at the same budget K; e.g., at K = 80 it achieves lower coefficient
RMSE and empirical tr A. In min—labels experiments, the regression—SE program yields a smooth
budget—variance trade—off (e.g., K ~ 79 at a moderate cap, falling to ~ 54 at a looser cap). In an
iso—variance comparison (matching the empirical variance of a regression—SE design), the row—SE
program required substantially more labels in our baseline instance, reflecting that protecting every
row is stricter than protecting the X—aligned error alone. Balanced fixed—size selection further
reduced realized variance while preserving unbiasedness.

8 Related work

Our setting transposes classical ideas from two adjacent literatures. In two—phase (validation)
designs for regression, one optimizes a subsample of units to estimate regression parameters under
cost constraints, often via influence—function—weighted allocations, GREG, or semiparametric
efficient scores; see, e.g., Chen and Lumley (2022); Mclsaac and Cook (2015). Here we optimize a
subsample of items to construct a derived outcome and then regress, but the design logic (auxiliaries,
calibration/balancing, convex programs) is analogous. In balanced sampling and calibration, the cube
method and GREG aim to match auxiliary totals and reduce realized variance without changing
first—order inclusions; that is exactly our goal when we drive j( 7{—’] — 1)g; towards zero (Deville
and Sarndal, 1992; Deville and Tillé, 2004). Finally, optimal experimental design (A—optimality)
motivates the square-root rule (Kiefer, 1959), and randomized sketching (leverage-score sampling)
offers a useful contrast: those sample rows of X to approximate least—squares on full data, while we
sample columns (items) to construct y itself (Drineas and Mahoney, 2016). For broader sampling
foundations, see Neyman (1934).

9 Assumptions and caveats

Labels, once observed, are accurate; item selection is independent of unknown a; but may depend
on (C,X).! If X"X is ill-conditioned, use w; = ng(X TX + M)~ lg;; convexity and numerics
improve. Choose 7y, > 0 so that any item that can affect estimators has nonzero inclusion.
Balanced/fixed-size designs reduce variance relative to Poisson; Poisson—based caps are conservative.
If label misclassification is present, HT targets the noisy trait unless corrected.

'f adaptive designs use realized labels, HT remains unbiased only if final inclusion probabilities correctly reflect
that adaptivity.



Software and reproducibility

A minimal, open—source implementation is available as the Python package fewlab (Sood, 2025).
The repository includes a small API (items_to_label) and examples mirroring the design logic in
this paper. See https://github.com/finite-sample/fewlab.
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