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Abstract

During continued training, a machine-learning model can begin misclassifying ex-
amples it previously labeled correctly—a within-task instability often called model
regression. While catastrophic forgetting across different tasks has been studied for
decades, standard supervised objectives still optimize only average accuracy and ig-
nore these per-example reversals, even though each flip can trigger costly downstream
work in production pipelines that rely on stable behavior. We propose two lightweight,
differentiable regularizers that embed a “do-no-harm” bias directly into the loss. The
flip penalty adds cost whenever an example that was correct with a safety margin in the
previous epoch becomes incorrect, and the soft Pareto penalty more gently discourages
any increase in per-example loss. Both methods track just one bit of historical state per
sample and require no extra passes over the data, so they drop seamlessly into existing
cross-entropy training loops. In a proof-of-concept study on the Adult-Income bench-
mark, enabling either penalty after a 10-epoch warm-up cut forgetting events on a fixed
evaluation set by 95–98% compared with an unregularized baseline. The soft Pareto
variant kept test accuracy within 0.5% of the baseline, showing that stability and per-
formance need not trade off sharply. Because the penalties are simple to implement
and add negligible computation, they offer a practical safeguard for production sys-
tems—especially human-in-the-loop settings—where consistency on known-good cases
is valued alongside headline accuracy.

1 Introduction

Machine-learning models deployed in production are routinely retrained or fine-tuned as new
data arrive. Although these updates generally improve overall accuracy, they can sometimes
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cause the same model to misclassify examples it previously labeled correctly. We refer to
each such reversal as model regression. This phenomenon resembles catastrophic forgetting
(French, 1999) but occurs within a single supervised task, rather than across clearly separated
tasks in continual-learning benchmarks. While catastrophic forgetting has inspired a rich
body of work in multi-task settings (Kirkpatrick et al., 2017; Zenke et al., 2017), the practical
consequences of model regression in production pipelines have received far less attention.

Model regression is more than a statistical curiosity: in human-in-the-loop systems
it incurs operational costs. When performance drops for a specific subgroup, organizations
must reallocate domain specialists, launch retraining programs, or absorb higher error-handling
expenses. Section 2 quantifies these costs through a staffing-optimization case study and
shows that even modest regressions can erase the financial gains of an accuracy update.

Standard supervised learning objectives minimize average loss and provide no in-
centive to preserve correctness on known-good examples. Consequently, training dynamics
may sacrifice stability for small aggregate improvements, exposing production systems to
disruptive swings in behavior.

In this paper, we propose two lightweight regularizers that address this gap:

1. Flip Penalty—adds a differentiable cost whenever an example that was correct with
a safety margin in the previous epoch becomes incorrect.

2. Soft Pareto Penalty—penalizes any increase in per-example loss, encouraging mono-
tonic improvement without freezing progress on harder samples.

Both methods require only a single bit of historical state per training example and no ad-
ditional passes over the data, making them easy to integrate into existing cross-entropy
pipelines.

Our contributions are threefold:

1. We formalizemodel regression and provide an economic framework that links per-example
reversals to real operational costs.

2. We introduce two differentiable, example-level penalties that substantially reduce re-
gression with negligible computational overhead.

3. We empirically demonstrate the effectiveness of these penalties on the Adult-Income
benchmark and discuss their applicability to production systems.

2 Operational Cost Case Study: Customer-Operations

Staffing

To ground the economic stakes of model regression, consider a financial services firm that
uses an ML classifier to triage incoming customer requests and detect cases requiring human
review. Requests are routed into categories—account inquiries, fraud alerts, loan applica-
tions, technical support, and so on. Each category has a dedicated team of specialists who
intervene when the model’s confidence is low or when it commits an error.
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2.1 Economic Drivers

• Specialization efficiency: Employees work fastest and most accurately within their
domain expertise (e.g., fraud analysts versus loan officers).

• Retraining cost: Moving workers between domains requires expensive retraining that
temporarily reduces productivity.

• Hiring and separation cost: Adjusting headcount entails recruiting, onboarding, or
severance expenses.

• Accuracy benefit: Higher model accuracy lowers the total volume of human inter-
ventions, reducing labor demand across all categories.

2.2 The Regression Cost Problem

When updating the ML model from version MA to MB, the company faces a trade-off.
While MB may achieve higher overall accuracy than MA, it may perform worse on specific
subgroups or categories. This creates two types of costs:

Staffing Realignment Costs: If model MB has worse performance on fraud detec-
tion but better performance on loan processing, staff must be moved from loan processing
to fraud detection roles, incurring retraining costs.

Accuracy Benefits: If model MB has sufficiently higher overall accuracy, fewer total
staff are needed, creating cost savings.

Let Cmove(MA,MB) denote the cost of staff realignment when transitioning from MA

to MB, and let Cstaff (M) denote the ongoing staffing cost for model M . The company
should only deploy MB if:

Cstaff (MA)− Cstaff (MB) > Cmove(MA,MB) (1)

2.3 Forgetting-Penalized Training as Economic Optimization

This business case provides clear economic justification for forgetting-penalized training.
Rather than accepting any model with higher overall accuracy, the company can use penalties
to constrain model updates such that:

1. Subgroup Performance Preservation: Penalize decreases in performance on indi-
vidual categories to minimize staff reallocation needs

2. Minimum Improvement Threshold: Only accept model updates if the overall
accuracy improvement exceeds a threshold τ that justifies operational disruption

3. Pareto-Aware Updates: Prefer model improvements that help some categories with-
out harming others
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The penalty-based objective becomes:

Leconomic(θ) = Lstd(θ) + λecon

K∑
k=1

max(0, ℓk(MA)− ℓk(Mθ)) (2)

where ℓk(M) represents the loss of model M on category k, and the penalty term
discourages performance decreases on any category.

2.4 Broader Implications

This operational perspective suggests that “regression” in machine learning should be un-
derstood not merely as a technical phenomenon, but as an economic externality. The cost of
operational disruption from model updates may outweigh the benefits of marginal accuracy
improvements, particularly in:

• Human-in-the-loop systems where model changes affect workforce allocation

• Multi-stakeholder environments where different groups depend on model perfor-
mance for specific use cases

• Regulated industries where model changes require compliance reviews and approval
processes

• Customer-facing applications where inconsistent model behavior affects user expe-
rience and trust

This economic framing provides a principled foundation for determining when for-
getting prevention is worthwhile and how to set appropriate penalty weights λ based on
operational costs rather than purely technical considerations.

3 Related Work

3.1 Example Forgetting as a Dataset Diagnostic

Toneva et al. (2019) introduced the notion of a forgetting event—a correct→ incorrect transi-
tion for a single example during SGD—and showed that (i) forgetting counts follow a heavy-
tailed distribution, (ii) the ranking of (un)forgettable examples is architecture-invariant, and
(iii) pruning the never-forgotten fraction of CIFAR-10 does not harm test accuracy. Follow-
up work leverages forgetting scores for data curation (Paul et al., 2021) and long-tailed
re-weighting (Yu and Chen, 2022). In contrast, we embed a differentiable forgetting cost
directly into the loss to prevent harmful flips in the first place.
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3.2 Catastrophic forgetting and continual learning

Catastrophic forgetting—loss of performance on earlier tasks while learning new ones—was
first noted by French (1999). Continual-learning research has since produced three main
families of defenses:

Parameter-level regularizers. Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), Memory-Aware Synapses (MAS) (Zenke et al., 2017), and Synaptic Intelligence (SI)
(Zenke et al., 2017) estimate parameter importance and penalize updates on important
weights. EWC, for example, uses the diagonal Fisher information,

Fi = E(x,y)∼Dold

[(
∂
∂θi

log p(y | x, θ)
)2]

,

and adds a quadratic penalty λ
2

∑
i Fi(θi − θ⋆i )

2 to the new task loss. These methods are
effective when task boundaries are known, but require storing (or recomputing) importance
estimates and do not directly address within-task regression.

Rehearsal buffers. Methods such as Gradient Episodic Memory (Lopez-Paz and Ranzato,
2017) replay a subset of past examples while learning new ones, thereby preserving previous
performance at the cost of extra memory and computation.

Architectural expansion. Progressive networks (Rusu et al., 2016) and related approaches
allocate new capacity for each task, sidestepping interference but sacrificing parameter effi-
ciency.

Our work differs in scope: we remain within one supervised task and operate at the
output level, tracking only one bit per example and requiring no task boundaries or replay.

3.3 Multi-objective and Pareto-optimal training

Multi-task learning can be cast as a multi-objective problem in which each task loss is an
independent objective. Lin et al. (2019) solve a set of constrained sub-problems in parallel to
approximate the Pareto front, producing a spectrum of accuracy–fairness (or other) trade-offs
that users can select post-training. Navon et al. (2021) go further, training a hypernetwork
that maps a preference vector to weights, thus generating the entire Pareto front in a single
run.

These methods aim to offer choices along a frontier of trade-offs. In contrast, our
penalties pursue a single, conservative update: they bias SGD toward changes that im-
prove—or at least do not worsen—every example’s loss. The goal is operational stability,
not exploration of a full trade-off surface, making our approach better suited to production
pipelines that value consistency on known-good cases.
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3.4 Summary

Prior work either analyzes example-level forgetting after training, protects entire tasks via
parameter or rehearsal methods, or explores Pareto trade-offs across tasks.

Our contribution is orthogonal: a lightweight, example-level regularizer that prevents
within-task regression during training and aligns directly with operational cost constraints
in real-world deployments.

4 Methods

4.1 Problem Formulation

Let D = {(xi, yi)}ni=1 be a training dataset, where xi ∈ Rd and yi ∈ {0, 1} for binary
classification. We denote the model parameters as θ and the prediction function as fθ(x).
The standard training objective minimizes the empirical risk:

Lstd(θ) =
1

n

n∑
i=1

ℓ(fθ(xi), yi) (3)

where ℓ is the loss function (e.g., binary cross-entropy).
As motivated by the operational cost analysis in Section 2, we seek to augment this

objective with penalty terms that discourage regression on previously learned examples,
particularly when the operational benefits of accuracy improvements do not justify the costs
of performance changes on specific subgroups or categories.

4.2 Classification Flip Penalty

Our first approach explicitly penalizes forgetting events—instances where an example tran-
sitions from being correctly classified to incorrectly classified between consecutive epochs.

Let θ(t) denote the model parameters at epoch t, and define the correctness indicator:

c
(t)
i = I[sign(fθ(t)(xi)− 0.5) = yi] (4)

The forgetting penalty at epoch t is:

R(t)
flip(θ) =

n∑
i=1

I[c(t−1)
i = 1 and c

(t)
i = 0] (5)

The total training objective becomes:

L(t)
flip(θ) = Lstd(θ) + λflip · R(t)

flip(θ) (6)

where λflip ≥ 0 controls the strength of the forgetting penalty.
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4.3 Confidence Drop Penalty

The Confidence Drop approach implements a more general ”do no harm” principle by pe-
nalizing any increase in per-example loss, not just classification flips.

For each example i, we track the per-example loss from the previous epoch:

ℓ
(t−1)
i = ℓ(fθ(t−1)(xi), yi) (7)

The Confidence Drop penalty encourages the current loss to not exceed the previous
loss:

R(t)
conf (θ) =

n∑
i=1

max(0, ℓ(fθ(xi), yi)− ℓ
(t−1)
i ) (8)

The complete objective is:

L(t)
conf (θ) = Lstd(θ) + λconf · R(t)

conf (θ) (9)

4.4 Implementation Details

Both penalty methods are applied after a warmup period to allow the model to stabilize
before enforcing regression constraints. Algorithm 1 presents the general training procedure.

Input: Dataset D, penalty type, λ, warmup epochs Twarmup

Initialize model parameters θ(0);
t← 0;
while not converged do

Compute standard loss: Lstd(θ
(t));

if t > Twarmup then
Compute penalty: R(t)(θ(t));

Total loss: Ltotal = Lstd + λ · R(t);

end
else

Total loss: Ltotal = Lstd;
end

Update parameters: θ(t+1) ← θ(t) − α∇θLtotal;
t← t+ 1;

end
Algorithm 1: Penalty-Based Training with Regression Prevention
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5 Experiments

5.1 Dataset and Setup

We evaluate our methods on the Adult income dataset (Kohavi, 1996), a binary classification
task predicting whether an individual’s income exceeds $50K based on demographic features.
The dataset contains 32,561 training examples and 16,281 test examples with 14 features
after preprocessing.

We use a multi-layer perceptron (MLP) with two hidden layers of 64 units each, ReLU
activations, and a sigmoid output layer. All models are trained using the Adam optimizer
with a learning rate of 0.01 for 50 epochs. The penalty mechanisms are activated after 10
warmup epochs.

5.2 Evaluation Protocol

To measure forgetting in a production-realistic setting, we establish a fixed out-of-sample
(OOS) evaluation set from the original validation data. Our evaluation protocol follows these
steps:

1. Train a baseline ”production” model on the training data

2. Record the baseline model’s predictions on the fixed OOS evaluation set

3. Continue training the model with different penalty mechanisms

4. Measure forgetting as examples where the baseline model was correct but the updated
model is incorrect on the same OOS set

This approach ensures that forgetting measurements are not confounded by changes
in the evaluation data and reflects the practical concern of maintaining performance on a
stable set of examples that the production system must handle correctly.

5.3 Evaluation Metrics

We track two primary metrics:

• Total Forgetting: Cumulative count of forgetting events on the fixed OOS set

• Final Accuracy: Classification accuracy on held-out test set after training completion

5.4 Results

Table 1 summarizes the performance of all three methods. Both penalty-based approaches
achieve substantial reductions in forgetting compared to standard training.

Key observations:
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Table 1. Experimental Results on Adult Income Dataset

Method Total Forgetting Final Train Acc Final Val Acc

Baseline 566 0.794 0.788
Classification Flip Penalty 12 0.759 0.760
Confidence Drop Penalty 29 0.786 0.783

• Both penalized methods reduced forgetting by more than an order of magnitude com-
pared to baseline

• The Classification Flip Penalty method achieved the lowest forgetting (12 events) but
with a more significant accuracy reduction (2.8% validation accuracy drop)

• The Confidence Drop Penalty method provided an effective trade-off, reducing forget-
ting by 95% while maintaining validation accuracy within 0.5% of baseline

• Standard training achieved the highest accuracy but experienced 566 forgetting events
on the fixed OOS evaluation set

6 Discussion

6.1 Practical Implications

Our results demonstrate that simple penalty mechanisms can effectively prevent regression
in standard supervised learning settings. The Soft Pareto approach is particularly appealing
for production systems, as it provides substantial forgetting reduction with minimal accuracy
cost.

These methods are especially valuable in:

• Production-grade systems where regression on known-good cases is unacceptable

• Human-facing models where consistency matters for user trust

• High-stakes domains like medical diagnosis, fraud detection, or compliance monitoring

• Curriculum or staged learning setups where early learning should be preserved

6.2 Limitations and Future Work

While our penalty-based approaches show promise, several limitations merit discussion:

1. Computational Overhead: Tracking per-example losses or correctness requires ad-
ditional memory and computation
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2. Hyperparameter Sensitivity: The penalty strength λ requires tuning for each ap-
plication

3. Limited Evaluation: Our experiments focus on a single dataset and architecture

Future work should explore these methods across diverse datasets, architectures, and
learning scenarios, including online learning and continual learning settings.

7 Conclusion

We have introduced two penalty-based approaches for preventing regression in machine learn-
ing: margin-based and loss-based penalties that discourage performance degradation on pre-
viously learned examples. Motivated by concrete operational costs in production systems,
our methods provide a lightweight mechanism for incorporating stability constraints into
standard supervised learning.

Our experimental evaluation demonstrates that these approaches can substantially
reduce regression events with modest accuracy costs. The loss-based penalty, in particu-
lar, offers an effective trade-off for production scenarios where consistency on known-good
examples has economic value.

This work establishes a foundation for treating model regression as an economic op-
timization problem rather than merely a technical curiosity. As machine learning systems
become increasingly embedded in business-critical processes, techniques for managing the
operational externalities of model updates will become essential components of responsible
AI deployment.
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