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 Many communication processes are broadly informative, exposing their participants to 

some goodly quantity and wide variety of information on at least one sizable topic, like policy or 

electoral choices.  The category includes both natural processes like election campaigns and ad 

hoc but naturalistic ones like Deliberative Polls (DPs).  The information exposure need not be the 

point.  Often, it is not.  In election campaigns, it is incidental, a by-product of persuasion or mo-

bilization.  In DPs and other deliberative fora, it is intrinsic but instrumental—not an end in itself 

but an ingredient in more fully considered, better founded opinions.  But in whatever fashion, for 

whatever reason, the exposure must occur, and at least some participants must learn something 

from it, or the process would be only degenerately “informative.”1   

 Almost always, we are interested in this learning—sometimes in the learning of this or 

that particular bit, affecting this or that particular attitude (as in Gilens 2001), but more often in 

the amount of topic-wide learning, affecting a wider range of attitudes, as well as vote intentions, 

levels of engagement, and the like.  In the aggregate, this is also normatively important, speaking 

to the educative value of election campaigns and the deliberative quality of deliberative fora.    

 But how best to measure it?  The obvious choice is observed knowledge gain:  the in-

crease in the proportion of knowledge items answered correctly.  For aggregate description, faute 

de mieux, this may serve.  But individual-level explanatory analyses—of learning as a function 

of causally prior variables or of causally subsequent ones as a function of learning—are another 

story.  There observed knowledge gain often yields underwhelming results.  But why?  Profes-

sors may glumly reflect that learning can be hard to induce.  But is it really, to the extent it oc-

curs, so haphazard and inconsequential?  No, the problem seems to be one of measurement.  Ob-

served knowledge gain turns out to be a surprisingly weak indicator of true knowledge gain. 

 This paper confirms the problem, examines its roots, and suggests one simple escape. 



2 

 

Following a real-world illustration, we show mathematically that (1) observed knowledge gain 

can be negatively correlated with true knowledge gain; (2) observed post-process knowledge, by 

contrast, is always positively correlated with it; and (3) the first correlation, even when positive, 

can fall short of the second.  We derive a necessary and sufficient condition for (1) and several 

sufficient conditions for (3), then use numerical simulations to show that, mathematical possibili-

ties aside, observed knowledge gain is in fact only weakly correlated with true knowledge gain—

but observed post-process knowledge quite strongly so (wherein lies the escape).     

Empirical Motivation  

 Informative processes often bring attitude change, as the aggregate results of both Delib-

erative Polling (Luskin, Fishkin, and Jowell, 2002; Luskin, Hahn, and Fishkin 2012) and statisti-

cal simulations (Bartels 1996, Delli Carpini and Keeter 1996, Althaus 2003) suggest.  But to 

what extent is it the learning, as opposed to other dynamics, that is responsible?  Individual-level 

analyses based on observed knowledge gain often yield fainter than anticipated effects.  

 Consider, for instance, a simple linear model of attitude change as a function of learning 

and small-group influences in a DP.  Let the ith individual’s attitude toward some policy or poli-

cy proposal at time t be Pit, the mean attitude (excluding the individual him- or herself) in his or 

her small group be Git, and his or her true knowledge gain be *

i .  Let t = 1 and t = 2, alternative-

ly denoted as t1 and t2, denote the beginning and the end of the process.  Taking the observed Pit 

and thus Git at face value while leaving open the question of how to proxy *

i , we may write: 

   Pi2 – Pi1 = γ0 + γ1
*

i  + γ2(Pi1 – Gi1) + wi,    

where the γ’s are parameters and wi is a disturbance.  The small group coefficient γ2 should be 

negative, in keeping with the individual’s tending to narrow the gap between his or her initial 
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opinion and those of the people around him or her, while the learning coefficient γ1 should carry 

the same sign as that of the sample-wide mean attitude change 2 1P P , if those learning the most 

are in fact mostly responsible for the mean attitude change (Luskin, Fishkin, and Jowell 2002).  

 Illustratively, we estimate this model for two national DPs, on Australia’s constitutional 

referendum in 1999 and the issue of crime in Britain in 1994 (Luskin et al. 2000; Luskin,  

Fishkin, and Jowell 2002), comparing the results when true knowledge gain *

i  
is proxied by   

(Table 1 about here) 

observed knowledge gain i versus observed post-event knowledge xi2 (see Appendix A for the 

knowledge items involved).  Using i , the results, in Table 1, are disappointing.  The estimated 

γ1 is substantively scrawny and statistically insignificant in five of the six estimations.  Things 

look up, however, when we try substituting xi2.  The estimated coefficients get larger, and five of 

the six, all bearing the right sign, are statistically significant.  Why this contrast?   

“Observed” versus “True” Knowledge 

 The explanation begins with the differences between “observed” and “true” knowledge— 

and, derivatively, “observed” and “true” knowledge gain.   

Definitions 

 The knowledge we are used to thinking about is “observed.”  It is, by definition, all we 

ever see.  Conventionally, the ith person’s observed knowledge at time t—call it xit—is the pro-

portion of the questionnaire’s knowledge items the person answers correctly at time t (normally 

based on an index of J ≥ 2 items, with J = 1 included as a special case).  More precisely, xit = 

n(Cit)/n(Q), where Q denotes the questionnaire’s knowledge items, Cit the subset the ith person 

answers correctly at time t, and n(Q) = J the number of elements in Q.    

 We are much less used to thinking about “true knowledge”—what “observed knowledge” 
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is trying to observe.  Its depths—what it means to know something—can be left to philosophy 

and neuroscience.  Nearer the surface, however, we may define the ith person’s true knowledge 

at time t—call it Xit—as the proportion of all knowable, relevant items he or she knows at time t.  

I.e., Xit = n(Kit)/n(U), where U (⊃ Q) is the set of knowable, relevant items, Kit the subset the ith 

person knows at time t, and n(Kit) and n(U) ( = R) the numbers of items in Kit  and U.   

 In these terms, observed knowledge gain is i ≡ xi2 − xi1, and true knowledge gain *

i ≡ Xi2 

− Xi1.  We call these “gains” because they are generally ≥ 0.  So long as the process is not actual-

ly disinformative, *

i should always ≥ 0.  So, with occasional, mostly small exceptions (mainly 

from guessing that happens to be luckier at t1 than at t2), should i .     

Details and Commentary 

 We leave the knowable bits or “items” in U unspecified, taking them only to be relatively 

granular.2  Illustratively, they may include ascriptive, descriptive, definitional, nesting, or causal 

propositions:  e.g., in the political domain, that the Republican party is right-of-center, that Ari-

zona’s immigration bill (SB 1070) requires state law enforcement officers to try to determine 

immigration status during lawful stops, detentions, or arrests; that the Affordable Care Act is 

what is commonly called “Obamacare,” that the Republicans are a political party, that green-

house gas emissions are changing the earth’s climate.  

 U includes everything that is relevant and knowable—what God knows—whether any 

mortal knows it or not.  That, at any rate, is the cleanest, least arbitrary, and most defensible def-

inition.  Even the greatest experts always have more to learn.  Confining U to what some person 

or other already knows would leave no room for new knowledge, for scientific discovery.  It 

would also make no difference to our proofs and negligibly little to our simulations.  On topics 

like policy issues, let alone politics as a whole, n(U) must be at least in the hundreds of thou-
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sands, if not orders of magnitude higher.   

 Thus Xit never gets much above 0.  Let Xmt and XMt be the attained, as distinct from theo-

retical or attainable, minimum and maximum—the lowest and highest Xit in the population (not 

just the sample participating in the process).  Clearly, Xmt = 0.  Some few people know absolutely 

nothing about politics.  But XMt is also very low.  Those following politics as vocation or avoca-

tion may know thousands, even tens of thousands ot items, but n(U) is vastly larger.  Thus it is 

hard to see how XMt can be higher than, say, .001.  Probably it is far lower.   

 Since very few people follow politics very closely, Xit’s distribution must also be severely 

right-skewed, with most people far closer to 0 than to XMt.  That makes Xit’s variance exremely 

low.  Its covariance with other variables (including a good xit) can still be high.   

 By contrast, xit typically ranges all the way from 0 to 1.  Q is a very small, very easy sub-

set (“item sample”) of U.  Question writers do not know enough to ask the items known only by 

policy experts, let alone those no one knows.  Of those they know, they favor relatively easy 

ones.  Otherwise, hardly anyone would score much above 0, except by lucky guessing.   

 Q’s biased subsetting of U makes xit much less right-skewed than Xit—indeed possibly 

not right-skewed at all, if the subsetting is biased enough.  In our observation, for what it is 

worth, xit does usually remain right-skewed, just much more mildly than Xit.   

 The same contrast of ranges holds for i vis-à-vis *

i : i can be sizable (averaging above 

.2 in some DPs), while *

i must be extremely small.3  Though typically larger than n(Ki1), n(Ki2) 

can still only be a tiny fraction of n(U).  At t2 as at t1, there is vastly more to know.  Of course the 

proportional true gain *

i /Xi1 may still be sizable.  A *

i of .0005 may be a 20 or 30% increase.   

 Accepting Xit’s 0 to near-0 range is humbling, not unlike contemplating one’s place in the 

universe from the deep countryside on a clear, moonless night.  Evaluatively, a more approacha-
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ble standard, confining U to information that is reasonably salient (readily encountered), in the 

spirit of Lupia (2006), may be preferable.  That would narrow the gap between the never-seen 

mean Xit, and the observed mean xit, casting the latter—typically not tiny, but less than impres-

sively large—in a more flattering light.  It is no help, however, in understanding i ’s relation to

*

i .  For that, the denominator must include whatever can be learned—much of which, especially 

in hothouse processes like DPs, may be useful but far from initially salient.             

 xit differs from Xit in both its domain and what it tallies:  Q (just the questionnaire’s 

items) versus U (all relevant, knowable items) and Cit (items answered correctly) versus Kit 

(items known).  Correspondingly, the measurement error, eit = xit – Xit, is of two sorts. The re-

sponse-production error r

ite  lies in the responses to given items. The jth item may sometimes be 

answered correctly (xijt = 1) by those who do not know the answer (Xijt = 0) or incorrectly (xijt = 

0) by those who do (Xijt = 1).  Guessing, if lucky, yields xijt = 1 despite Xijt = 0.  Reticence may 

yield xijt = 0 (from a DK response) despite Xijt = 1.  At the index level, r

ite is the mean, over j, of 

xijt – Xijt—or, equivalently, xit – itX  = [n(Cit) – n( itK  )]/n(Q), where n( itK  ) is the number of items 

in Q the ith person knows at time t, and itX  ≡ n( itK  )/n(Q) thus a version of Xit confined to Q.  

The item-sampling error s

ite , the difference between the fractions of the questionnaire items and 

of the relevant universe the ith person knows— itX  –Xit = n( itK  )/n(Q) – n(Kit)/n(U)—lies in Q’s 

subsetting of U.  Note that eit = xit – Xit = (xit – itX  ) + ( itX  – Xit) = r

ite + s

ite .4  

 We make these distinctions to be clear about what we are including and excluding.  The 

item-sampling error is important to understanding i ’s weakness as an indicator of *

i , as we 

shall see; the response-production error, not so.  From here on, therefore, we exclude the latter, 
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setting Cit = itK  , xit = itX  , and thus r

ite = 0.  This simplifies the math at minor cost.   

 The item-sampling bias E( s

ite ) is the mean item-sampling error over hypothetically re-

peated, independent draws of n(Q) items from U.  For the ith person at time t, Xit is a constant, 

but n( itK  ) and thus itX  and s

ite = itX  – Xit vary from item-sample to item-sample.5  Absent re-

sponse production error (given r

ite = 0), we may take E(xit) (=E( itX  )) = Xit when Xit = 0.  Those 

knowing none of the items in Q answer none correctly.  Setting E(xit) = Xit = 0 aside, however, 

Q’s privileging of easy items implies that E( itX  ) > Xit and thus that E( s

ite ) = E( itX  ) – Xit > 0:  

the item sampling bias is positive (and, we submit, gigantic).  It also implies E(xit) > Xit. 

 Implicitly, we have been taking the item-level xijt and Xijt as binary—xijt = 1 (correct) or 0 

(incorrect), Xijt = 1 (known) or 0 (not known)—a close and harmless approximation.6  We could 

wrinkle the definitions to allow Xijt and xijt to vary more graduatedly from 0 to 1, but our math, 

simulations, and conclusions concern the proportions Xit and xit, which already do just that (for J 

> 1, in the case of xit). 

Theory 

 Now consider the relations between these variables.  The learning is *

i  = Xi2 – Xi1, the 

measurements xi1, xi2, and i = xi2 – xi1.  We take Xi2 to be a function of Xi1 and xi1 and xi2 to be 

functions of Xi1 and Xi2, respectively.  Indirectly, that also makes *

i , xi2, and i functions of Xi1.  

For simplicity, we continue to assume r

ite  = 0, regard Xit and xit as continuous over the [0, 1] in-

terval (in practice, the [0, XM1] interval for Xit), and take the functions relating Xi2 to Xi1 and xi1 

and xi2 to Xi1 and Xi2 (from which those relating *

i and i to Xi1 derive) to be continuous and dif-

ferentiable over the [0, 1] interval.7       
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 In this light, the knowledge and learning should have the following properties:    

 L1.  The participants learn: E(Xi2|Xi1) is a strictly increasing function of Xi1, with slope 

δE(Xi2|Xi1)/δXi1 > 1.  Those starting at Xi1 = k > 0 end at E(Xi2|Xi1 = k) > k.   

 L2.  The more knowledgeable learn more:  E( *

i |Xi1) is also a strictly increasing function 

of Xi1.  More new information sticks when there is more previously cognized information for it to 

stick to (e.g., Recht and Leslie 1988; Eckhardt, Wood, and Jacobvitz 1991; Cooke, Atlas, Lane, 

and Berger 1993; Hambrick 2003).8     

 L3.  Those who know nothing learn nothing:  E(Xi2|Xi1 = 0) = 0.9  At Xi1 = 0, there is noth-

ing for new information to stick to.  In any given unit (as distinct from item) sample nobody may 

actually have Xi1 = exactly 0.  People of that description are isolated, cognitively incapable, or 

both and thus unlikely to be interviewed or participate in an informative process.  But they would 

be expected to emerge from such a process, could they be roped into one, at E(Xi2|Xi1) = Xi1 = 0. 

 The observed knowledge and learning should have these properties:           

 M1.  Those who know nothing show no knowledge, while those who know the most show 

as much as the measure permits: E(xit|Xit = 0) = 0, E(xit|Xit = XMt) = 1.10  Absent lucky guessing 

and reticence (both assumed away as part of r

ite = 0), those for whom Xit = 0 say DK to all the 

items in Q, yielding E(xit|Xit = 0) = 0, while those for whom Xit = XMt, who know the answers to 

questions much harder than anything in Q, answer them all correctly.  E(xit|Xit) may possibly 

reach 1 for Xit well shy of XMt but at least reaches 1 by (and probably long before) Xit = XMt.  

       M2.  The more knowledgeable appear to know more, but the less so, the more they know:  

E(xit|Xit) is an increasing function of Xit, δE(xit|Xit)/δXit a decreasing function of it.  The first 

clause says that xit is neither useless (δE(xit|Xit)/δXit always = 0) nor perverse (δE(xit|Xit)/δXit ever 

< 0) as an indicator of Xit, the second that a higher Xit and thus a higher E(xit|Xit) leave less room 
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(1 – E(xit|Xit)) for further increase. Thus δE(xit|Xit)/δXit is initially steep but then flattening, ap-

proaching 0, as Xit nears XMt.
11  This is a “ceiling effect.”  

 M3.  People appear to know more than they do:  E(xit|Xit) > Xit (for Xit > 0).  Item-

sampling bias means that no real-world questionnaire can yield xit < Xit.    

 M4.  The more knowledgeable appear to learn more, then, beyond a point, to learn less:  

δE( i |Xi1)/δXi1 > 0 for Xi1 <V , = 0 for Xi1 =V , and < 0 for Xi1 >V , whereV is the turning 

point (0 < V < XM1).  Both those who know nothing (Xi1 = 0) and those who know the most (Xi1 

= XM1) appear to learn the least.  The former actually learn nothing; the latter, despite actually 

learning the most, cannot show any learning, having started at E(xit|Xit = XMt) = 1.  In-between, 

increasing Xi1 increases E(xit|Xit) and E( *

i |Xi1) but also decreases the room (1 – E(xi1|Xi1)) left 

for E( i |Xi1).  Up to V , the net effect is to increase i ; beyond V , to decrease it.  This too is a 

species of ceiling effect, with the difference that the curve does not merely plateau as Xi1 ap-

proachesV but declines once Xi1 passes it.       

Model and Assumptions 

 Together, L1-L3 and M1-M4 suggest that i may not be a very good indicator of *

i .  The 

higher the Xi1, the higher the expected *

i  (L2), but, beyond a point, the lower the expected i  

(M4), obviously sapping i ’s correlation with *

i .  The correlation could even be negative.  The 

same properties also suggest that xi2 may do better.  Increasing Xi1 increases both the expected 

*

i and the expected xi2, the latter via Xi2 (L2, M1).  Those ending with a high xi2 tend to have a 

high *

i —either observably, if starting at relatively low Xi1 and thus low xi1, or unobservably, if 

starting at relatively high Xi1 and thus high xi1.   
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 But let us state and reason this more precisely.  L1-L3 and M1-M4 can be concretized in 

learning and measurement equations, expressing Xi2 as a function of Xi1 and xi1 and xi2 as func-

tions of Xi1 and Xi2, respectively—and in the implied equations for xi2,
*

i and i as functions 

strictly of Xi1.  

 The functional forms need particular care.  As proportions, Xi2, xi1, xi2,
*

i , and i are all 

“limited”—bounded in theory by 0 and 1 (assuming xi2 ≥ xi1, so that i  ≥ 0) and in practice by 0 

and 1 for xi1 and xi2, by 0 and XM2 for Xi2 and *

i , and by 0 and 1 – xi1 for i .  Strictly speaking, 

therefore, linear equations are inapt.  This is not especially important for Xi2’s dependence on Xi1.  

We are concerned with increases—with knowledge gains—and Xi2’s practical ceiling, XM2, is 

nowhere near 1.  Thus we take that equation as linear.  But xi1 and xi2 do frequently near or equal 

1, and their consequently decreasing slopes on Xi1 (M2’s “ceiling effect”) are a major part of the 

story.  The logistic form is relatively intractable here, so we make the measurement equations 

quadratic—stipulating that they be concave and that the vertices occur at Xi1 = XM1 (and Xi2 = 

XM1) thus confining the variation in Xi1 (and Xi2) to the upslope.  Then both δE(xi1|Xi1)/δXi1 and 

δE(xi2|Xi1)/δXi1 > 0, with both 2

1( iE x |Xi1)/
2

1iX  and 2

2( iE x |Xi1)/
2

1iX  < 0 (up to Xi1 = XM1, at 

whch point δE(xi1|Xi1)/δXi1 = δE(xi2|Xi1)/δXi1 =
2

1( iE x |Xi1)/
2

1iX = 2

2( iE x |Xi1)/
2

1iX  = 0).      

 More precisely, we let  

(1)  Xi2 = βXi1  

(2) xi1 = bXi1 + c 2

1iX + ui1  

(3) xi2 = bXi2 + c 2

2iX + ui2 = bβXi1 + cβ2 2

1iX  + ui2 

implying   

(4) *

i = Xi2 – Xi1 = (β – 1)Xi1 
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 (5) i = xi2 – xi1 = (β – 1)bXi1 + (β2 – 1)c 2

1iX  + ui2 – ui1, 

and the conditional expectations: 

(6) E(Xi2|Xi1) = βXi1 

 

(7) E(xi1|Xi1) = bXi1 + c 2

1iX  

 

(8) E(xi2|Xi1) = bβXi1 + cβ2 2

1iX  

 

(9) E( *

i |Xi1) = (β – 1)Xi1 

 

(10) E( i |Xi1) = (β – 1)bXi1 + (β2 – 1)c 2

1iX . 

 We make the equations intercept-less, in keeping with L3 and M1; adopt the textbookish 

assumptions that E(ui1) = E(ui2) = E(vi) = 0, that ui1 and ui2 are independent of Xi1, Xi2, and one 

another, and that vi is independent of ui1, ui2, and Xi1 to get from (1)-(5) to (6)-(10); and make the 

learning equation (1) exact (undisturbed) and take the measurement coefficients b and c to be the 

same at t1 and t2 (leaving the difference between xi1 and xi2 a function only of the differences be-

tween Xi1 and Xi2 and between ui1 and ui2) to streamline the math;12 We also assume, innocuous-

ly, that V(Xi1) be strictly > 0 (not everyone starts with exactly the same true knowledge).    

 More centrally, we stipulate that β > 1, consistent with L1-L2; that b > 0 and c < 0, to 

make (2) and (3) and thus (7) and (8) concave, in keeping with M2 and M4; and take the vertices 

of (2) and (3) and thus (7) and (8) to occur at Xi1 = XM1 (or, equivalently,Xi2 = XM2 = βXM1).    

We also set E( i |Xi1 = 0) = 0, in keeping with M1, adding, symmetrically, that E( i |Xi1 = XM1) 

also = 0.  

   Figure 1 shows the curves traced by E(xi1|Xi1), E(xi2|Xi1), and E( i |Xi1).  The vertices oc-

cur at Xi1 = –b/2c, –b/2cβ, and –b/2(β + 1)c, respectively.  Call these values V1, V2, andV .  Since 

b > 0, c < 0, and β > 1, 0 < V < V2 < V1.  As Xi1 increases, E( i |Xi1) peaks first, then E(xi2|Xi1), 
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then E(xi1|Xi1).  The associated ordinates are –b2/4c for both V1 and V2 but –(β – 1)b2/4(β + 1)c for  

(Figure 1 about here) 

V , making E( i |Xi1)’s peak lower than E(xi2|Xi1)’s = E(xi1|Xi1)’s.  As the graph also suggests, E(

i |Xi1) peaks when Xi1 is half its attained maximum: V = XM1/2.13   

 All this is simplification, of course.  The functional forms may not be exactly right.  Xi2 

may depend on more than Xi1, xit on more than Xit.  The assumptions about ui1, ui2, and vi may not 

all hold.  Their means may not be 0; they may not be independent of Xi1 or each other; and their 

variances cannot be constant, given the limited nature of Xi2 , xi1, and xi2.  But all models and as-

sumptions are, at best, approximations, and this relatively simple set-up heads us toward some 

illuminating results, as we are about to see.   

Mathematical Implications 

 Our concern is with the correlations between the indicators i and xi2, on the one hand, 

and the concept *

i , on the other: 

(12)  *


  *( , )i iC   /
*( ) ( )i iV V    

(13)  *
2x



 *

2( , )i iC x  /
*

2( ) ( )i iV x V  ,  

where we use subscripted ρ’s for correlations and V’s and C’s for variances and covariances.  A 

glance at Figure 1 suggests that *


can be negative and, even when positive, exceeded by *
2x




.  

But let us see where the math (detailed in Appendix B) takes us.    

 The variances and covariances in (14)-(18) can be shown to be:  

(19) *( , )i iC   =  (β – 1)2[(β + 1)cC( 2

1iX Xi1) + bV(Xi1)] 
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(20) C(xi2, 
*

i ) = bβ(β – 1)V(Xi1) + cβ2(β – 1)C( 2

1iX , Xi1) 

(21) *( )iV  = (β – 1)2V(Xi1) 

(22)  ( )iV   = (β2 – 1)2c2V( 2

1iX ) + (β – 1)2b2V(Xi1) – 2bc(β2 – 1)(β – 1)C( 2

1iX , Xi1) + V(ui2)   

   + V(ui1) 

(23) V(xi2) = b2β2V(Xi1) + c2β4V( 2

1iX ) + 2bcβ3C( 2

1iX , Xi1) + V(ui2) 

 Several further results immediately follow:     

 R1. Either *


 or *
2x




(or both) can be negative.    

Note that for Xi1 ≥ 0, as it is here, C( 2

1iX , Xi1) > 0.  And, by assumption, b > 0, β > 1, and V(Xi1) 

strictly > 0, while c < 0.  Thus, specifically,   

 R2. *


> 0  iff  bV(Xi1) > –(β + 1)cC( 2

1iX , Xi1) 

 R3. *
2x




> 0 iff bV(Xi1) >  –cβC( 2

1iX , Xi1)   

Note that R2  *


> 0  iff γ < –b/(β + 1)c, and R3  *
2x




> 0 iff γ < –b/βc, where γ =  

C( 2

1iX , Xi1)/V(Xi1) is the slope of the linear, bivariate, population regression of 2

1iX on Xi1.  And 

since –b/(β + 1)c obviously < –b/βc (both > 0),  

 R4. *


> 0 ⇨ *
2x




> 0, 

refining and elaborating on R1: *


and *
2x




 can both > 0 (when γ < b/(β + 1)c); they can both < 

0 (when γ >–b/βc); *


can < 0, but *
2x




> 0 (when –b/(β + 1)c < γ < –b/βc); but *
2x




cannot < 0  

if *


> 0.  If *


is positive, so is *
2x




.  Thus *
2x




must > 0 at least as frequently as *


 

 Beyond this, the correlations are less scrutable.  Plugging (19)-(23) into (12) and (13) 

yields nonlinear, nonadditive functions of β, b, c, C( 2

1iX Xi1), V(Xi1), V( 2

1iX ),V(ui1), and V(ui2).  A 
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jointly sufficient condition for *


> *
2x




is that C(xi2, 
*

i ) > *( , )i iC   and ( )iV   > V(xi2).  But 

neither half of that condition necessarily obtains.   

Numerical Simulations 

 So R1-R4 reveal only so much.  Both *


and *
2x




can be negative, *


more often than

*
2x




.  But how often, in each case, does that tend to be?  Does *
2x




 tend to exceed or fall short 

of *


, and by what margin? How large does each tend to be?  Each could be positive but weak.  

To address such questions, we turn to numerical (as distinct from statistical) simulations to get a 

sense of *


and *
2x




 for plausible combinations of β, b, c, C( 2

1iX Xi1), V(Xi1), V( 2

1iX ),V(ui1), and 

V(ui2).
14  We sketch the steps here, leaving further details to Appendix C. 

 The parameters β, b, c, C( 2

1iX Xi1), V(Xi1), V( 2

1iX ),V(ui1), and V(ui2), governing the t1 dis-

tribution of knowledge, the learning from the process, and the measurement of knowledge, vary 

across populations, topics, processes, and measurements.  The maximum attained t1 knowledge 

XM1 may be greater for some topics and for some populations than others (greater, e.g., about 

food in France than in Britain or about nuclear energy in Japan than in Rwanda).  The expectable 

learning may be greater for some processes than others, depending  on the quantity and accessi-

bility of the information provided, the incentives to take it aboard, and the extent of helpful inter-

actions between learners.  DPs may typically induce more learning than public relations cam-

paigns, and some DPs more than others.  The knowledge index may entail greater or lesser item-

sampling bias.  Etc.     

 Realistically, these parameters can plausibly occupy only certain ranges.  Since the exact 

ranges are inherently debatable, we make them generously wide, bounded at numbers that stretch  
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the meaning of “plausible.” effects of  shifting them higher or lower.  We denote the lower and 

(Table 2 about here) 

upper bounds by the subscripts m and M, appended to β, b, c, C( 2

1iX Xi1), V(Xi1), V( 2

1iX ),V(ui1), 

and V(ui2) (and adopt the same convention for other quantities figuring in our reasoning, notably 

including XM1).  Table 2 summarizes the parameter ranges, as well as the ancillary settings to be 

introduced as we proceed (α, π, λ, qm, qM, ψm, ψM, 1m , 1M , 2m , and 2M ).15 

Numerical Scenarios 

 We draw the parameters in the sequence β, b, c, C( 2

1iX Xi1), V(Xi1), V( 2

1iX ),V(ui1), and 

V(ui2).  Here is the reasoning by which we bound them:   

 β. From (7), people starting at Xi1 can be expected to gain (β – 1)Xi1, making β – 1 the 

proportional increase,
*

i /Xi1.  We take 20% (βm = 1.2) to 100% (βM = 2) as the plausible range.  

 b.   As noted, E(xi1|Xi1)’s vertex is at Xi1 = XV1 = –b/2c.16  We set XM1 = –b/2c.   

 

(6)  XM1 = –b/2cβ    

 

(7) c = –b/2βXM1  

 

 

 Now, set (2′) to pass through (0,0) and (XM1, 1), so that E(xi1|Xi1) = 0 at Xi1 = 0 and = 1 at 

Xi1 = XM1.  Then 

 

 1 = bXM1 + c 2

1MX  

 

 bXM1 + c 2

1MX  – 1 = 0 

 

 bXM1 + (–b/2βXM1)
2

1MX  – 1 = 0 (plugging in –b/2βXM1 = c, from (7)) 

 

 bXM1 + (–b/2β)XM1 – 1 = 0  
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 (b – (b/2β))XM1 – 1 = 0 

 

 (2βb – b)/2β))XM1 = 1  

 

 ((2β – 1)b)/2β))XM1 = 1  

 

 ((2β – 1)b))XM1 = 2β 

 

 b = 2β/(2β – 1)XM1 

 

   

 

 

 b2.  Since b1 > βb2, ⇔ b2 < b1/β, we set b2M  = b1/β, using the previously drawn b1 and β.  

Now b2m.  From (3), XM2 = βXM1 + vM, where vM denotes the v associated with XM1 (as distinct 

from the maximum v).  Let the maximum vM be vMM = λβXM1 (λ > 0), so that XM2M = β(1 + λ)XM1, 

i.e., XM2 can be up to 100λ% larger than expectable from XM1.   Then, taking xM2 = 1 and b2 thus 

= 1/XM2, b2m = 1/XM2M  = 1/β(1 + λ)XM1 = b1/β(1 + λ).  We set λ = .2, yielding b2m = b1/1.2β.  

 V(Xi1).  Theoretically,V(Xi1) can range from 0 to .25—in the first case, when everyone 

has the same true knowledge; in the second, when half the population is at 1, and half at 0, with 

nobody in-between.  In reality, however, 0 is too low, and .25 vastly too high. For high q, the 

stylized distribution with 100q% of the population at 0 and 100(1 – q)% uniformly distributed 

over [0, XM1] = [0, 1/b1], captures Xi1’s severe right skew, and its readily calculated variance, of  

[
2

1MX (1 – q)(1 + 3q)]/12 = [(1 – q)(1 + 3q)]/12
2

1b ,17 suffices to give a rough sense of V(Xi1).
18  

For now, we set qm = 2/3 and qM = 3/4, implying
1

2

X m = 13/192
2

1b ≅ .06771/
2

1b (for q = 3/4) and

1

2

X M = 1/12
2

1b ≅ .08333/
2

1b (for q = 2/3).  Since b1 is very large, both
1

2

X m and 
1

2

X M are very 

small.  At t2,
2

2  X depends on
2

v as well as
1

2 2  X  .  Let
2

v be 100ψ% of
1

2 2  X  (ψ > 0) implying 
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that
2

2  X = (1 + ψ)
1

2 2  X  and making the ρ2 (population R2) for (3)
1

2 2  X  /(1 + ψ)
1

2 2  X  = 1/(1 + 

ψ).  Since (3)’s variables are conceptual, and the rich reliably get richer, we set ψM  = 3/7 (ρ2 = 

.7) and ψm = 1/9 (ρ2 = .9), implying
2

2  X m = (1 + ψm)
1

2 2  X  = (10/9)
1

2 2  X  and
2

2  X M = (1 + ψM)

1

2 2  X   = (10/7)
1

2 2  X  , using the previously drawn   and
1

2

X .   

 V(xi2).  Item-sampling bias makes xi1 and xi2 much less right-skewed than Xi1 and Xi2 (if 

right-skewed at all).  Thus
1

2

x and
2

2

x dwarf
1

2

X and
2

2

X .  Let 
2

tu be 100 t % of
2 2 

tt Xb  , where 0 <

tm < t < tM , so that
2 
tx = (1 + t )

2 2 
tt Xb  .  The reliability '

t tx x
 = 1 – (

2

tu /
2

tx ) = 
2 2

tt Xb  /
2

tx is then 

1/(1 + t ).  We take '
1 1x x

 as ranging from .4 to .75 (on the high side for attitudes, but about right 

for knowledge).  Much lower '
1 1x x

 ’s tend to be disqualifying (the measure gets revised or dis-

carded), much higher ones rare.  Thus we set 1m = 1/3 ( '
1 1x x

 = .75) and 1M = 3/2 ( '
1 1x x

 = .4), im-

plying
1

2  x m = (4/3)
1

2 2

1   Xb  and
1

2  x M = (5/2)
1

2 2

1   Xb  .  Given some learning-based reduction in noise,

'
2 2x x

 should tend to be slightly > '
1 1x x

 and 2 thus slightly < 1 .  Thus we set 2m = 1/4 ( '
2 2x x

 = .8) 

and 2M = 11/9 ( '
2 2x x

 = .45), implying
2

2  x m = (5/4)
2

2 2

2   Xb  , and
2

2  x M = (20/9)
2

2 2

2   Xb  ,  

using the previously drawn values of b1, b2,
1

2

X , and
2

2

X .19 

Mechanics 

 The simplest distribution of each parameter would be uniform, but our reasoning suggests 

some skew.  Within the ranges just sketched, b1 and b2 should generally be closer to b1M and b2M 

than to b1m and b2m (their distribution distinctly left-skewed), while β,
1

2

X ,
2

2  X ,
1

2

x ,
 
and

2

2  x  

should generally be closer to βm,
1

2

X m ,
2

2  X m
1

2  x m , and
2

2  x m than to βM,
1

2  X M ,
2

2  X M ,
1

2  x M , and
2

2  x M

(their distribution distinctly right-skewed).  The half-standard-normal, (0,1)N , decidedly but not 

grotesquely skewed, seems a reasonable embodiment of this thinking.    
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 More precisely, we draw suitable translations of b1, b2, β,
1

2

X ,
2

2

X ,
1

2

x , and 
2

2

x from  

within the corresponding translations of their ranges.  The translations “reflect” b1 and b2 (mak-

ing high values low and vice versa); translate b1M, b2M, βm,
1

2

X m ,
2

2  X m ,
1

2  x m , and
2

2  x m to 0; and let 

b1m and b2m be undershot and βM,
1

2  X M ,
2

2  X M ,
1

2  x M , and
2

2  x M be overshot only 100α% of the 

time.20  Here we set α = .01.  Once having drawn b1, b2, β,
1

2

X ,
2

2

X ,
1

2

x , and 
2

2

x , we derive 

1

2

u ,
2

2

u , and
2

v  using (19)-(21); evaluate Conditions 1a and 3a; and derive *


and *
2x




using 

(11)-(15).21  For further details (and other settings), see Appendix C.   

Results  

 Table 3 displays the results from these million draws within these plausible ranges.  

These are generally bad news for i .  True, Condition 1a is never met; *


is never actually < 0.  

But it is also never very high, topping .3 only about one quarter of the time, almost never topping 

(Table 3 about here) 

.4, and averaging only .247—low even for a reliability (a correlation between indicators of the 

same concept) and still lower for a correlation between concept and indicator.22       

 By contrast, *
2x




is almost never less than .5.  It usually exceeds .6 (about two-thirds of 

the time) and not infrequently exceeds .7 (nearly 20% of the time).  It averages .634.  And  alt-

hough the sufficient Condition 3a is met only about a quarter of the time, *


always < *
2x




.  In 

short, i fares poorly, xi2 much better.  These results are quite robust, moreover, as can be seen in 

Appendix C, which varies the distribution, the α, and the parameter ranges.  

Reflections 

 Empirical examples, mathematics, numerical simulations—everything here is of a piece: 
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i  is not a good measure of learning; xi2 is much better.  More precisely, *


is rarely very large 

and almost always less than *
2x




.  We interrogate these results in a moment.  Taking them as 

given, however, let us first note some interesting side implications.   

 The first is that Converse’s (1990) oft-quoted description of political knowledge as hav-

ing “low mean and high variance” is incorrect.  Xit has low mean and low variance.  Everyone 

sits at or very near 0.  Normed against the extremely low mean, as in the squared “coefficient of 

variation” (the standard deviation divided by the mean), the variance would look somewhat 

higher but still very low.  What is true (and what Converse probably meant) is that Xit is a varia-

ble of low mean and high skew.  The same is generally, though not inevitably, true of xit,.  Item-

sampling bias notwithstanding, many people congregate at the low end of the scale.  The mean 

and variance are much higher than for Xit but, almost always, still very low.  Across seven whole 

pre-deliberation DP samples we have examined with this question in view, the variance ranges 

from .026 to .059, averaging .039.  In the 1988, 2000, and 2008 ANES, whose knowledge items 

are easier, the variances are .080, .062, and .077.  These are in fact lower as proportions of their 

logical maximum (.25) than the corresponding means are as proportions of theirs (1.0).23 

 Second, xit must hugely overerstimate Xit, mainly thanks to the item-sampling bias E(
s

ite ). 

The response-production bias E(
r

ite ) may also be positive.  Yes, some knowledge may be buried 

in DK and partially correct responses (Mondak 1999, Mondak and Davis 2001, Krosnick, Lupia, 

DeBell, and Donakowski 2008, Gibson and Caldeira 2009), and, yes, respondents may not al-

ways have enough time or incentive to retrieve fugitive knowledge (Prior and Lupia 2008).  On 

the other hand, lucky guesses (on closed-ended items) outnumber, several-fold, the incorrect and 

DK responses hiding knowledge (Luskin and Bullock 2011).  But these are much smaller errors, 
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at least partially canceling each other out.  So, even if E(
r

ite ) < 0, it must be far smaller in magni-

tude than E(
s

ite ).  Finally, the unit sampling bias, too, is generally positive; surveys tend to un-

derrepresent the less knowledgeable.  In sum, xit must overestimate Xit, even setting item-

sampling bias aside—and all the more so, with item-sampling bias taken into account.  

 Third, there nonetheless remains the issue of how to evaluate xit, given the smallness of 

Xit.  Everything relevant and knowable is an unapproachable standard.   For evaluation, it may 

therefore make sense to exclude the insufficiently salient (readily encountered) or useful (capable 

of changing attitudes or choices).  At least if this qualifying criterion is salience, its imposition 

should brighten our characterization of xit.  More salient items are likelier to be known.  

 Usefulness, on the other hand, is a very different criterion.  Many items are salient but not 

useful (“soft news,” anyone?).  Many more are useful but not salient (where to begin?).  Salience 

is confined to the media spotlight, usefulness far widerspread.24  And the correlation between 

them, given the media’s and most citizens’ predilection for fluff, may be weak, even negative.  

Thus narrowing by usefulness may not brighten, indeed may darken our impression of xit. 

 The distinction is especially worth making because it is usefulness that is normatively 

important.  Ignorance of what is salient but not useful lacks ready excuse but does little harm; 

ignorance of what is useful but not salient is excusable but damaging.  Individuals should want to 

align their policy preferences and votes with their values and interests, and the value of majority 

rule is maximized by everyone’s doing so.  Knowledge of the useful helps; knowledge of the sa-

lient, if not also useful, does not.   

 Again, such re-normings are just ways of thinking better (or worse) of xit’s distribution, 

regarding it as higher or lower than it is, by sy applying a more approachable or more normative-

ly discriminating standard.  Willy-nilly, often unconsciously, we all do something of the sort.  
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Yet it is important to recognize how rough, arbitrary, and thus debatable any such adjustment 

must be:  who is to say what is salient or useful enough for inclusion?  Or how big an adjustment 

is therefore appropriate (and in which direction, if by usefulness)?  

Reconsiderations 

 Can i somehow be vindicated (shown to be a good measure after all)?  No, not really.  

Theoretically, Q could be made large enough to equal U.  Then s

ite and thus E( s

ite ) would = 0, 

since itK  would then = Kit.  There would be no item sampling, hence no item-sampling bias.  

E(xit|Xit = XMt) would = XMt (still far < 1), and b1 = b2 = 1.25  That would preclude *


< 0, mak-

ing ( – 1)(b2 − b1)
1

2

X in (11) positive instead of negative.  Intuituvely, it should also greatly 

increase *


and reduce *
2x




− *


, since there would no longer be any xit anywhere near 1, una-

ble to show much gain.  Or if Q were still ⊂ U but randomly sampled from U, E(n( itK  )) would 

= [n(Q)/n(U)]n(Kit), and E( s

ite ) would again = 0.  The salutary consequences for i , averaging 

across item samples, would be the same.  But these are neverland scenarios.  U is always im-

mense, and Q always a very small, highly nonrandom subset of it, implying E( s

ite ) far > 0.   

 Outside our domain, artificially small topics might contain only a handful of knowable 

bits.  In that case, Q could equal or approach U—not by making Q unrealistically large but be-

cause U would be so small.  Again this would reduce or eliminate item-sampling bias, making 

E(xit|Xit = XMt) = XMt, and b1 = b2 = 1, although in this case XMt would presumably = 1.  That 

again should make *


much larger and generally > *
2x




.  Or the process, regardless of topic 

size, could simply be uninformative, i.e., α = 0 and   = 1 in (5), implying that nobody systemat-

ically gets richer.  Intuitively, that too should greatly increase *


and reduce *
2x




− *


, by un-
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dercutting the negative relationship between actual learning and the room available to show it.  

But again both uninformative processes and fly-speck topics are outside our domain.  

 More generally, the assumptions underlying our proofs are inequalities expressing 

tendencies:  b1, b2 > 1 (item sampling bias),   > 1 (the rich getting richer), and b1 > b2 (ceiling 

effects).   They do not and need not say anything about the extent to which b1, b2 > 1,  > 1, or 

b1 > b2  (the strength of those tendencies).  Similarly, the reasoning behind b1, b2 > 1 requires 

only that U ⊃ Q and n(U) thus  > n(Q), not that n(U) > n(Q) to any particular degree.  This is 

enough to establish that *


can be < 0, that *
2x




is always > 0, and that *


can be < *
2x




(and 

the conditions under which the first and third of those inequalities obtain).  Our simulations, sug-

gesting how often these inequalities hold and how large *


, *
2x




, and *
2x




– *


tend to be, do 

stipulate plausible ranges of b1, b2, and  .   But these are wide ranges, and Appendix C shows 

that moving them up or down a fair bit leaves the thrust of the results unaltered—that only set-

tings describing an uninformative process or a minute topic can make i  look good.    

 So much for vindication: i is not a good measure.  Can it be rehabilitated—made into 

one?  No, not really.  It can probably be improved, but not nearly enough.  One largely unavail-

ing idea is simply to ask harder items, reducing the item-sampling bias.  The trouble is, the item-

sampling bias can only be reduced so much, for reasons previously given.  The question-writers 

do not know many of the hardest items, and legitimately shy away from asking the hardest they 

do know, lest xit = 0 (lucky guessing aside) for all or nearly all i, obscuring absolutely small but 

relatively large differences in Xit.  Bankrupting xit is not a good way of bailing out i .   

 Another largely unavailing idea is to ask more items.  Ceteris paribus, increasing n(Q) 

should increase xit’s reliability.  Expanding a 6-item index whose reliability is .6 to 12 items can 
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be expected to increase its reliability to .75.26  But would that help i ?  Conditions 1a and 3a can 

be reexpressed as '
1 1x x

 > 
2

1b b2
2

v /[( − 1)(b1 − b2)
1

2

x ] and '
1 1x x

 < b1/2b2β, but both sides of both 

inequalities depend on b1, making the righthand-sides moving targets and the practical implica-

tions hard to read.27 Our simulations, however, allow us to chart the mean *


and mean *
2x




as 

functions of '
1 1x x

 (within its plausible range of .4 ≤ '
1 1x x

 ≤ .75).  Figure 1 shows that the mean *


  

increases with increasing '
1 1x x

 , but only slightly.  It remains low, never getting much above .25.   

(Figure 1 about here) 

The mean *
2x




, meanwhile, holds roughly steady, well above .6.  In fine, increasing '
1 1x x

 does 

help—but not enough to help.  i remains a weak measure, both absolutely and in relation to xi2.      

 But perhaps i could be rehabilitated by “observing” differently—by defining xit as some-

thimg other than the unweighted proportion of a fixed set of items answered correctly.  One 

might, for example, estimate a knowledge score on the basis of an item response theory (IRT) 

model (as in Levendusky and Jackman 2000); weight by difficulty, giving greater credit for an-

swering harder items correctly (as in Sood 2011); or branch the items, asking harder/easier items 

of those answering the previous ones correctly/incorrectly (as in Montgomery and Cutler 2013). 

 The first two approaches seem unlikely to make much difference.  Luskin and Bullock 

(2006) compare the scores from a two-parameter (difficulty and discrimination) IRT model, as in 

Jackman (2000), with conventionally scored indices varying in such details as the treatment of 

DK responses.  The correlations are all above .96.  Weighting, for its part, does not reduce the 

1’s at all, may not decrease the near-1’s very much, and scrunches the lower scores together—

slightly increasing discrimination at the high end but slightly reducing it at the low end).28   

 Branching (as in computer assisted testing, or CAT) has more promise.  By increasing the 
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number of items (not all asked of the same respondents), it can increase the variance and dis-

crimination of the scores.  Much depends on further details—the number, focus, and difficulty of 

the items in the pool, the exact branching criteria, and the like (see Montgomery and Cutler 

2013)—but it is important to note that limitations on question writers’ expertise and respondents’ 

patience are apt to cap item pools at the high dozens.  This is no objection, only a caution about 

how much improvement can realistically be expected, even in xit.
29 

 The impact on i is likerly still smaller.  Branching’s (or weighting’s or IRT modeling’s) 

ability to compensate or adjust for item-sampling bias is limited:  you can’t include, up-weight, 

or branch to items you don’t know enough to ask.  And, as we have seen, increasing xit’s reliabil-

ity, a common aspiration (and criterion) of CAT, only slightly boosts i ’s correlation with
*

i .    

Conclusion 

 Together, the oversampling of easy items, easily neared or hit ceilings on xit, and the ten-

dency of the most knowledgeable to learn the most make i a weak measure of
*

i .  A simple fix, 

not requiring any new or additional data, is to switch to xi2.  More elaborate fixes, either modeling

i ’s relation to 
*

i or applying other, more refined measures of 
*

i , may also avail.  For now, we 

have sketched and explained the problem and indicated a simple way of sidestepping it.
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Figure 1 

E(xi1|Xi1), E(xi2|Xi1), and E( i |Xi1) 
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Table 1 

Learning and Attitude Change in Two DPs 

 Const. Ref. 

(Australia)† Crime (U.K.) 

 

  Intended Vote 

(+) 

Punishment 

( – ) 

Police 

( – ) 

Procedural 

Rights 

( – ) 

Social Root 

Causes 

( + ) 

Self-Protection 

( – ) 

 i  xi2 i  xi2 i  xi2 i  xi2 i  xi2 i  xi2 

γ1  1.6* 1.98* .01 -.07* -.01 -.10* -.02 -.09* .04 -.01 .01 -.06* 

γ2 -3.94* -4.20* -.18* -.21* -.29* -.32* -.39* -.37* -.44* -.45* -.53* -.54* 

             
R2 .47 .47 .05 .07 .15 .15 .19 .21 .33 .33 .24 .25 

n 298 298 296 296 296 296 295 295 296 296 296 296 

Note:  Estimated intercepts not reported.  The parenthetical signs in the column headings are those of 2 1P P
 
and thus the expected 

signs of γ1.  

*p < .05, one-tailed.  
†Maximum likelihood estimates of ordered logit model and pseudo-R2s. 
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Table 2 

Parameter Ranges and Other Settings 

A.  Ranges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Xi1 Descriptive Statistics Settings for Chi-Squared Distribution 

 

 

 

 

NOTE:  As in the text, m and M distinguish plausible minima and maxima.  

 As Applied More Generally 

 m M m M 

XM1 .0001 .000001 XM1m XM1M 

ϕ1 0.8 0.95 ϕ1m ϕ1M 

ϕ2 0.5 MIN(ϕ1,0.9) ϕ2m MIN(ϕ1, ϕ2M
†) 

𝜎𝑣
2 

1

3
𝛽2𝜎𝑋𝑖1

2  
3

2
𝛽2𝜎𝑋𝑖1

2  
1

3
𝛽2𝜎𝑋𝑖1

2  
3

2
𝛽2𝜎𝑋𝑖1

2  

𝜎𝑢1
2  

1

3
𝑏2𝑉𝑎𝑟(𝑋𝑖1|𝐴, 𝐵) 

3

2
𝑏2𝑉𝑎𝑟(𝑋𝑖1|𝐴, 𝐵) 

1

3
𝑏2𝑉𝑎𝑟(𝑋𝑖1|𝐴, 𝐵) 

3

2
𝑏2𝑉𝑎𝑟(𝑋𝑖1|𝐴, 𝐵) 

𝜎𝑢2
2  

1

3
𝑏2𝛽2𝑉𝑎𝑟(𝑋𝑖1|𝐴)

+  𝑏2𝜎𝑣
2 

3

2
𝑏2𝛽2𝑉𝑎𝑟(𝑋𝑖1|𝐴)

+  𝑏2𝜎𝑣
2 

1

3
𝑏2𝛽2𝑉𝑎𝑟(𝑋𝑖1|𝐴) + 𝑏2𝜎𝑣

2 
3

2
𝑏2𝛽2𝑉𝑎𝑟(𝑋𝑖1|𝐴) +  𝑏2𝜎𝑣

2 

Parameter Value 

k 5 

d 0.99 
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Table 3 

Simulation Results  

A. Piecewise  

     Relative Frequencies 

Range *


 *
2x




 
*

2x



− *


 

-.1 to 0 .000 - .174 

0 to .1 .003 .000 .495 

.1 to .2 .021 .000 .253 

.2 to .3 .147 .006 .066 

.3 to .4 .527 .221 .011 

.4 to .5 .297 .711 .001 

.5 to .6 .006 .062 .000 

.6 to .7 .000 .000 .000 

.7 to .8 .000 .000 .000 

.8 to .9 .000 .000 .000 

.9 to 1.0 .000 .000 .000 

     Summary Results 

Mean *


 .365 

Mean *
2x




 .463 

Proportion ( *
2x




> *


) .874 

B. Quadratic 

 

 

 

 

 

 

 

 

 

 

Note:  Ranges are closed at the bottom and open at the top (e.g. from .1 to .199 …).   
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Figure 1 

Graphs of the two models 

A. Piecewise linear 

 

B. Quadratic 
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NOTES 
 

*This paper has benefitted from discussions with Larry Bartels, Henry Brady, Martin Elff, James 

Fishkin, Marta Fraile, James Gibson, Kimmo Grönlund, John Londregan, Markus Prior, David 

Sanders, Pascal Sciarini, Nicholas Valentino, and Jonathan Wand, among others.  Earlier ver-

sions were presented at the annual meetings of the American Political Science Association, 

Washington, DC, September 2-5, 2010; the Midwest Political Science Association, Chicago, IL, 

March 31-April 3, 2011; the Society for Political Methodology, July 28-30, 2011; and the annual 

Joint Sessions of the European Consortium for Political Research, Salamanca, Spain, April 10-

15, 2014.   

1We take the bulk of the information to be at least debatably correct.  Disinformational process-

es, replacing knowledge with misinformation, may lead to knowledge losses.     

2For economy, we use “items” to refer both to questionnaire items and the knowable bits they are 

asking about, a relatively innocuous simplification.  Some questionnaire items may refer to more 

than one knowable bit, making n(Q) a slightly larger fraction of n(U) (with U comparably rede-

fined to have larger, hence fewer elements).  But the fraction is always tiny.   

3Thus i is generally much larger than *

i , except when xi1 = 1, making i necessarily 0.     

4This resembles but differs from familiar partitionings of “total survey” error (nicely reviewed in 

Fuchs 2008).  Those refer to the whole sample, and the “sampling error” thus to unit sampling.  

Here we focus on just the ith observation and on item sampling. As remarked below, unit sam-

pling affects the sample mean, over i, of the xit, but it is item sampling, affecting any given xit, 

that is the key to understanding xit in relation to Xit and i in relation to *

i .  

5If Q equaled U, s

ite would = 0, since itK  would then = Kit, and if Q were randomly sampled from 

U, E(n( itK  )) would = [n(Q)/n(U)]n(Kit), and E( s

ite ) would thus = 0.       
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6For closed-ended items, constructed so that one and only one response option is correct, taking 

xijt as binary is not an approximation at all.  Even for open-ended ones, which elicit some (Gib-

son and Caldeira 2009) but apparently not often verymany (Luskin and Bullock 2011) partially 

correct responses, it is not too far off.  For Ximt, it just means taking the elements of U to be small 

enough to be indiscerptible.  One either knows or does not know that Mitch McConnell is a U.S. 

Senator, despite, in many cases, partially knowing who Mitch McConnell is (knowing some but 

not all of his numerous attributes) (Luskin and Bullock 2011).    

7Xit, given n(U), is virtually continuous; xit, given n(S), much less so.  But treating xit as continu-

ous is still a useful pretense in laying out our hypotheses and models.      

8The rich, i.e., get richer.  The poor also get richer, but less so.  This recalls the sociological and 

economic tendencies known as “accumulated advantage,” or the “Matthew Effect,” after Mat-

thew (25:29), although Matthew also has the poor getting poorer, which is not true of learning.    

9The poor may not get poorer, but those who have nothing get nothing.  

10Note that E(xi1|Xi1 = XM1) is not xM1, the maximum attained xit in the population, which only < 1 

in the vanishingly unlikely event that nobody (including any of the question writers themselves!) 

knows all the answers to the questions the question writers have posed or the marginally likelier 

event that an item amounts to a trick question so tricky that not one of the people knowing all the 

other items in Q gets it right.  Nor is it the maximum xi1 in the (unit) sample, which depends on 

the luck of the draw and may be < 1 and either < or > E(xi1|Xi1 = XM1).  Nor is it the observed 

value of xi1 corresponding to XM1, which may < or > E(xi1|Xi1 = XM1), on account of ui1.       

11On average, δE(xit|Xit)/δXit is not merely > 0 but > 1, indeed much > 1.  Its mean is the slope of 

the secant line from (0, 0) to (XMt, 1), which = 1/XMt, and XMt much < 1.    
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12Since Xi1 and Xi2 are conceptual (undistorted by measurement error), and the knowledge-rich 

very relaibly tend to get knowledge-richer, the omitted disturbance may not account for very 

much of the variation in Xi2 anyway.  

13Given E( i |Xi1 = XM1) = 0, (10′) yields 0 = (bβ – b)XM1, + (cβ2 – c) , boiling down to XM1 = 

–b/c(β + 1) = 2V . 

14Statistical simulations draw instead from distributions of the disturbance(s) and exogenous re-

gressors, which, for given parameter values, generate multiple datasets, illuminating the repeat-

ed-sampling behavior of estimators.  Here we are not considering estimation.   

15The m’s and M’s subscripting q, ψ, and t  have a slightly different meaning than those sub-

scripting the parameters.  They are discrete values—ingedients in the ends of the parameter 

ranges but not the ends of ranges themselves. We draw no q’s between qm and qM.  They just help 

define
1

2  x m and
1

2  x M , between which we draw values of
1

2  x .  See below. 

16The corresponding ordinates are –b2/4c for E(xi1|Xi1) and E(xi2|Xi1) and –(β – 1)b2/4(β + 1)c  

for E( i |Xi1).  Note that E( i |Xi1)’s vertex is lower than E(xi2|Xi1)’s = E(xi1|Xi1)’s.   

  
17Define D = 0 for Xi1 = 0 and = 1 for Xi1 ~ U(0, XM1).  Since, generically, W ~ U(a, b) has a 

mean of E(W) = (b + a)/2 and a variance of V(W) = (b – a)2/12, the conditional means and vari-

ances of Xi1 are E(Xi1|D=0) = V(Xi1|D=0) = 0 and E(Xi1|D=1) = 1MX /2 and V(Xi1|D=1) = 
2

1MX /12.  

Thus E(
2

1iX |D=1) = V(Xi1|D=1) + (E(Xi1|D=1))2 = 
2

1MX /12 + 
2

1MX /4  = 
2

1MX /3, while of course  

E(
2

1iX |D=0) = 0.  Overall, therefore, E(Xi1) = (1 – q)(XM1/2) +q(0) = (1 –q)XM1/2, E(
2

1iX ) =  

(1 – q)(
2

1MX /3) + q(0) = (1 – q)(
2

1MX /3), and V(Xi1) (denoted in the text as
1

2

X ) = E(
2

1iX ) – 

(E(Xi1))
2 = (1 – q)(

2

1MX /3) – (1 – q)2 2

1MX /4 = [
2

1MX (1 – q)(1 + 3q)]/12.   

2

1MX
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18The stylized distribution has more 0’s, fewer near-0’s, and more near-XM1’s than the actual one.  

19Since
1

2

x M is largest for
2

tX =
2

tX M , one last constraint is (1 + 1M )
2

1  b [(1 – qm)(1 + 3qm)]/12
2

1b =  

(1 + 1M )[(1 – qm)(1 + 3qm)]/12 ≤ .25.  The assigned values of 1M and qm satisfy this (and
1

2

x M  is  

no worry, since 
2

2

x < 
1

2

x ).  See Appendix C for further discussion. 

20The over- and under-shooting stem from (0,1)N ’s being unbounded above.  The translations 

are defined so as to ensure that only 100α% of the draws will correspond to b1 < b1m, b2 < b1m, β 

> βM,
1

2

X >
1

2

X M ,
2

2

X >
2

2

X M ,
1

2

x >
1

2

x M , or
2

2

x >
2

2

x M .  Those rare draws are simply discarded.    

21It would be more conventional to fix
1

2

u ,
2

2

u , and
2

v  (along with
1

2

X , b1, b2, and  ) and then 

derive 
2

2

X ,
1

2  x , and
2

2  x , but in absolute terms we have a much better sense of the variances of 

the x’s and X’s than of the u’s and v (although we do have and invoke some sense of 
1

2

u ’s,
2

2

u ’s, 

and
2

v ’s relative ranges in setting the ranges of 
2

2

X ,
1

2  x , and
2

2  x ).      

22Under standard (random-error) assumptions, xx  ≤ xX , where x and x are generic indicators of 

the generic concept X.  Thus i ’s correlating with *

i at .247 is even less pleasing than its having 

a reliability of .247 would be.   

23The standard deviation may be more appropriate than the variance.  But it, too, is not distinctly 

greater as a proportion of its maximum (of .5) than the mean as a proportion of its maximum.     

24Learning one obscure fact may seldom affect preferences, but the test of utility is not whether it 

could do so in a vacuum but whether it could do so if one knew enough else to contextualize it.   

25XM2 > XM1, despite E(xi2|Xi2 = XM2) proportionally > E(xi1|Xi1 = XM1).   

26Lengthening the index from J to K ( > J) items makes the expected reliability of the M-item  
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index ' '
1 1 1 1

(1 ( 1) )
x x x x

s s   , where '
1 1x x

 is the reliability of the J-item index, and s = K/J.  This is  

the well-known Spearman-Brown formula (see, e.g. Gulliksen 1987).  

27Ceteris paribus, a higher b1 means a higher '
1 1x x

 ( =
1

2 2

1 Xb  /
1

2

x ) but also a lower
1

2

x , a higher 

2

1b b2
2

v /[( − 1)(b1 − b2)
1

2

x ], and a higher b1/2b2β.    

28Take an index of J items, ordered by difficulty, where the jth (j = 1, 2, …, J) is (d(j – 1) +1) 

times harder than the first (d ≥ 0), making the Jth and hardest (d(J – 1) + 1) times harder than the 

first and easiest.  If J = 10, and d = 1/3, e.g., the second, third, and tenth items are 4/3, 5/3, and 

12/3 = 4 times harder than the first.  If the items are strictly Guttman-scalable, meaning that any-

one answering the jth (j  ≥ 2) item correctly answers all the j – 1 easier ones correctly but may or 

may not answer any of the 10 – j harder ones correctly, the weights, constrained to sum to 1, are 

.040, .053, .067, .080, .093, .107, .120, .133, .147, and .160, and the scores for answering 0-10 of 

the items correctly become 0, .04, .093, .160, .240, .333, .440, .560, .693, .840, and 1.  Those an-

swering all 10 items correctly still score 1; those answering all but one correctly now score .84 

instead of .9; and those answering 0, 1, or 2 correctly now score 0, .04, .093 instead of 0, .1, .2. 

29It may help to overlay branching with weighting.  The M items answered correctly by respond-

ent A may on average be easier or harder than the M answered correctly by respondent B, if the 

sequences of items they answer correctly and incorrectly are not the same.  Weighting can take 

account of that.  Unweighted scores of M/J become instead a scatter around M/J. 


