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Abstract

We study post-hoc calibration for multiclass classifiers when two
desiderata collide: (i) match known class totals (label marginals) and
(ii) preserve the within-class ranking of instances induced by the orig-
inal model. Classical prior-correction methods (e.g., EM under label
shift) and per-class logit shifts achieve (i) but can scramble rankings
via instance-specific softmax renormalization; popular multiclass cal-
ibrators (temperature, matrix/vector scaling, Dirichlet) address cal-
ibration error but do not enforce (ii). We formulate calibration as
Euclidean projection onto the intersection of two closed convex sets:
a row-simplex set and a columnwise isotonic+sum set, where isotonic
order within each class is defined by the model’s pre-calibration scores.
We give a Dykstra alternating-projection solver and an ADMM split-
ting; for the column subproblem we provide an exact one-pass PAV
solution followed by a scalar shift to satisfy the column sum constraint.
We also provide nearly-isotonic variants that trade tiny, controlled vi-
olations for calibration gains. Experiments show we can match target
totals while preserving within-class orderings and maintaining com-
petitive ECE/Brier scores across neural and tabular benchmarks. Our
Python implementation is open source.1

1 Introduction

Calibration of probabilistic classifiers is essential for decision-making where
predicted probabilities should reflect empirical frequencies. In many ap-
plications (health, finance, survey weighting), practitioners must both (a)
adjust predictions to match known class totals and (b) maintain the model’s
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within-class discrimination—the relative ordering of instances within each
class.

In the multiclass setting (J ≥ 3), naive per-class logit shifts (or label-
prior corrections) can change instance orderings within a class because the
softmax renormalization term varies by instance. Standard multiclass cali-
brators such as temperature scaling [Guo et al., 2017] and Dirichlet calibra-
tion [Kull et al., 2019] improve calibration but do not guarantee order preser-
vation. Label-shift/ prior-correction methods [Saerens et al., 2002, Lipton
et al., 2018] match marginals, but can induce the same ranking problem.
We address this gap.

1.1 The Rank-Scrambling Problem

Given original probabilities pij and per-class multiplicative weights wj , the
adjusted probabilities

qij =
wjpij∑J
k=1wkpik

depend on the instance-specific denominator. Hence pi1j > pi2j need not
imply qi1j > qi2j .

Worked example (3 classes, two instances).

p1,· = (0.51, 0.48, 0.01), p2,· = (0.49, 0.02, 0.49), w = (1, 100, 1).

Then q11 = 0.51/(0.51 + 48 + 0.01) ≈ 0.0105 while q21 = 0.49/(0.49 + 2 +
0.49) ≈ 0.1644, reversing the original class-1 order.

1.2 Contributions

1. Rank-preserving calibration as projection: We project the orig-
inal probability matrix onto the intersection of (a) the row-simplex
and (b) per-column isotonic+sum sets, where isotonic order is the to-
tal preorder induced by the original scores for that class.

2. Algorithms: We develop (i) a Dykstra alternating-projection method
and (ii) an ADMM splitting. The column projection is solved exactly
by a single PAV pass followed by a scalar shift to match the target
column sum.

3. Nearly isotonic extensions: We provide ϵ-slack and hinge-penalty
variants to tune the calibration–discrimination trade-off.
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4. Empirical validation: Across neural and tabular classifiers, we match
targets while preserving within-class weak orders (ties respected) and
maintaining competitive calibration metrics.

2 Related Work

Label/prior shift and matching marginals. When deployment priors
differ from training priors, the EM update of Saerens et al. [2002] and later
black-box shift estimation [Lipton et al., 2018] adjust predicted posteriors
to match new class totals without refitting. These methods are effective
for marginals but apply instance-specific renormalization that can reverse
within-class orderings in J≥3.

Multiclass calibration. Temperature scaling and class-wise linear maps
(vector/matrix scaling) [Guo et al., 2017] and Dirichlet calibration [Kull
et al., 2019] are widely used but do not enforce within-class ranking con-
straints. Recent work also explores ranking-aware criteria [Ma and Blaschko,
2021] and normalization-aware isotonic approaches for multiclass settings
[Arad and Rosset, 2025], which are complementary; neither simultaneously
enforces rank preservation and matches given class totals.

3 Problem Formulation

Let P ∈ RN×J
+ be the matrix of predicted probabilities, with rows on the

probability simplex. We seek Q ∈ RN×J
+ such that:

1. Row-simplex:
∑J

j=1Qij = 1 for all i and Qij ≥ 0.

2. Column sums:
∑N

i=1Qij = Tj for targets T1, . . . , TJ .

3. Isotonic columns: For each class j, sorting rows by the original Pij

(stable, ties respected), the sequence (Q1j , . . . , QNj) is nondecreasing.

We solve the projection

min
Q

1

2
∥Q− P∥2F s.t. Q ∈ Srow ∩ Icols. (1)
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3.1 Feasibility

If
∑J

j=1 Tj = N and 0 ≤ Tj ≤ N for all j, the intersection is nonempty: the
constant-column matrix Qij = Tj/N lies on the row simplex, matches the
column totals, and is isotone (constant) in each column.

4 Algorithms

4.1 Dykstra’s Alternating Projection Algorithm

Algorithm 1 Dykstra’s method for rank-preserving calibration

Require: P ∈ RN×J , targets T ∈ RJ , tolerance ε, max iters
1: Initialize: Q(0) = P , U (0) = 0, V (0) = 0
2: for k = 1 to max iters do
3: Y (k) = Q(k−1) + U (k−1) (add correction)
4: Z(k) = Πrow(Y

(k)) (project each row onto the simplex)
5: U (k) = Y (k) − Z(k) (update correction)
6: W (k) = Z(k) + V (k−1) (add correction)
7: Q(k) = Πiso,sum(W

(k), T ) (per-column isotone + fixed sum)
8: V (k) = W (k) −Q(k) (update correction)
9: if ∥Q(k) −Q(k−1)∥F /max(1, ∥Q(k−1)∥F ) < ε then

10: break
11: end if
12: end for
13: return Q(k)

Row projection Πrow. We use a fast probability-simplex projection per
row withO(J log J) time via sorting [Duchi et al., 2008] (or Condat’s variant)
[Condat, 2016].

4.2 Exact Column Projection: Isotone + Sum Constraint

For each column j, let w ∈ RN be the current column vector arranged in
the fixed order that sorts P·j once and for all (stable, ties respected). We
seek

min
x∈RN

1
2∥x− w∥22 s.t. x1 ≤ · · · ≤ xN ,

N∑
i=1

xi = Tj .
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Solution. Compute y = PAV(w) (one pass). Then set the scalar shift

c =
Tj −

∑N
i=1 yi

N
and x⋆ = y + c · 1.

Correctness. The isotone set is closed under addition of a constant vec-
tor, and the Euclidean projection onto a translation-invariant convex set
commutes with that translation; the KKT system for the sum constraint
introduces a single Lagrange multiplier that is exactly the constant shift
above. Note: nonnegativity is not enforced in this subproblem; it is handled
by the subsequent row-simplex projection.

Algorithm 2 Column projection Πiso,sum (single PAV + scalar shift)

Require: Column w ∈ RN in fixed score order, target sum T
1: y ← PAV(w)
2: c← (T −

∑
i yi)/N

3: return y + c · 1

Complexity. Per Dykstra iteration: row projections cost O(NJ log J);
column projections are O(NJ) given pre-sorted order. The orders per col-
umn are computed once upfront in O(JN logN).

4.3 ADMM Formulation

Introduce Q = R = S, with R ∈ Srow and S ∈ Icols:

min
Q,R,S

1

2
∥Q− P∥2F s.t. R ∈ Srow, S ∈ Icols, Q = R = S.

Standard ADMM updates apply [Boyd et al., 2011]. The R-update is the
row-simplex projection; the S-update is Algorithm 2. Warm-starts reuse
PAV block structure and previous shifts.

5 Nearly Isotonic Variants

Epsilon-slack constraints. Replace xi+1 ≥ xi with xi+1 ≥ xi − ϵ. Let
x̃i = xi + iϵ. Then x̃ is standard isotone, and the sum constraint becomes∑

i x̃i = T + ϵ
∑

i i. Apply Algorithm 2 to w̃ with target T̃ , then recover
xi = x̃i − iϵ.
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Hinge-penalty approach. Add λ
∑

imax(0, xi − xi+1) to the objective.
The proximal step can be implemented efficiently via splitting: a standard
isotonic projection substep plus a shrinkage on violations; we provide a
practical solver in the package docs.

6 Theoretical Notes

Convergence. For closed convex sets, Dykstra’s method converges to the
Euclidean projection onto the intersection [Bauschke and Borwein, 1994].
Quantitative rates depend on geometry: polyhedral regularity can yield lin-
ear or even finite convergence in special cases; in worst cases convergence
can be arbitrarily slow. We report iteration counts and primal residuals in
experiments. ADMM convergence is standard for strongly convex objectives
with closed convex constraints [Boyd et al., 2011, Tibshirani, 2017].

Rank preservation. Because column isotonicity is enforced in the fixed
order induced by P·j with stable ties, the calibratedQ·j preserves the original
weak order (ties may remain ties).

7 Computational Considerations

• One-time sorting: For each class j, compute and cache the permu-
tation that sorts P·j once. All iterates reuse this order.

• Row projection choice: We use the O(J log J) sorter-based simplex
projection [Duchi et al., 2008]; Condat’s variant is a drop-in alternative
with strong empirical performance [Condat, 2016].

• Warm starts: Dykstra and ADMM both benefit from reusing PAV
block structure and previous scalar shifts.

8 Experiments

Baselines. We compare to (i) EM prior correction [Saerens et al., 2002],
(ii) BBSE reweighting [Lipton et al., 2018], (iii) temperature scaling [Guo
et al., 2017], (iv) Dirichlet calibration [Kull et al., 2019], and (v) normalization-
aware multiclass isotonic calibrators [Arad and Rosset, 2025].
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Metrics. We report ECE, classwise ECE, Brier score, and rank-preservation
rate (fraction of within-class pairs whose order is unchanged), plus top-K
stability (Jaccard of top-K instance sets per class), column-total deviation
maxj |

∑
iQij − Tj |, and row-simplex deviation. Because ECE has binning

pathologies, we follow recent guidance on binning and class-conditioning
[Vaicenavicius et al., 2019, Nixon et al., 2019] and include reliability dia-
grams.

Stress tests. We evaluate on (a) CNNs (e.g., ResNet-50) on CIFAR-100,
(b) gradient boosting and random forests on UCI tabular data, and (c) label-
shifted holdouts to diagnose rank scrambling in prior-correction baselines.

Summary. Our method matches column totals to numerical tolerance,
preserves within-class weak orderings by construction, and attains com-
petitive calibration error. Nearly-isotonic variants yield smooth calibra-
tion–discrimination trade-offs.

9 Discussion and Limitations

The approach is suitable when relative ordering matters (regulation, triage,
survey weighting). It is less suitable when the base model has poor dis-
crimination (no ranks to preserve) or when computational budgets prohibit
iterative projections on very large N (where stochastic variants may help).
Extending to KL/Bregman geometries would connect to classical matrix
scaling/IPF and is a promising direction.

10 Conclusion

We presented a projection-based multiclass calibrator that preserves within-
class rankings while matching population totals. The method is simple
(PAV+shift inside Dykstra/ADMM), efficient in practice, and plugs neatly
into existing pipelines.
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