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Abstract

In applied survey research and causal inference, entropy balancing is used to reweight
observational data so that covariate distributions match known or desired population
margins. While the standard approach solves a convex optimization problem that
minimizes KL divergence from base weights while enforcing exact moment-matching
constraints, real-world applications increasingly demand adaptive solutions for stream-
ing data, updated calibration targets, and high-dimensional covariates. We propose
replacing closed-form optimization with a Multiplicative Weights Update (MWU) al-
gorithm that maintains weights via iterative exponential updates, operates in batch
or streaming mode, and adapts dynamically to changing target moments. Our ap-
proach transforms entropy balancing into a no-regret learning process over marginal
constraints, offering superior scalability and flexibility while maintaining accuracy com-
parable to classical methods.

1 Introduction

Entropy balancing has become a fundamental tool in survey research and causal inference
for adjusting observational data to match population characteristics (Hainmueller, 2012).
The method addresses the common challenge of ensuring that sample covariate distributions
align with known population margins, thereby reducing selection bias and improving the
validity of statistical inferences.

However, contemporary applications face increasingly complex demands that chal-
lenge traditional entropy balancing approaches:

1. Streaming data requirements: Modern data collection often involves batched ar-
rivals (e.g., polling waves, rolling panels) that require real-time adjustment rather than
batch processing.
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2. Dynamic target adjustment: Calibration targets frequently change (e.g., revised
Census benchmarks, updated population estimates) necessitating rapid recomputation.

3. High-dimensional scalability: Rich administrative datasets with thousands of co-
variates strain traditional optimization approaches.

1.1 Limitations of Current Approaches

The classical entropy balancing method, typically implemented via quasi-Newton methods
like BFGS, exhibits several limitations in modern applications:

• Non-adaptive nature: Each change in targets or data requires solving the optimiza-
tion problem from scratch.

• Scalability constraints: Performance degrades significantly with high-dimensional
covariate spaces (d > 100).

• Batch-only operation: The method assumes complete dataset availability, preclud-
ing streaming applications.

1.2 Our Contribution

We propose an adaptive entropy balancing framework based on Multiplicative Weights Up-
dates (MWU) that addresses these limitations while maintaining the theoretical guarantees
of classical entropy balancing. Our approach leverages the connection between entropy bal-
ancing and online learning to create a streaming-compatible, scalable alternative that adapts
seamlessly to changing conditions.

2 Methodology

2.1 Problem Formulation

Given sample covariates xi ∈ Rd for i = 1, . . . , n and target population moments x̄pop ∈ Rd,
we seek weights w ∈ ∆n−1 (the probability simplex) such that:

n∑
i=1

wixi = x̄pop, wi > 0,
n∑

i=1

wi = 1 (1)

Classical entropy balancing solves the optimization problem:

min
w

KL(w∥u) subject to the moment constraints (EB)

where u represents base weights (typically uniform) and KL(w∥u) =
∑n

i=1wi log(wi/ui)
is the Kullback-Leibler divergence.
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2.2 Multiplicative Weights Reformulation

The Lagrangian formulation of problem (EB) with dual variables λ ∈ Rd yields the closed-
form solution:

wi(λ) =
uie

−λ⊤xi

Z(λ)
, Z(λ) =

n∑
j=1

uje
−λ⊤xj (2)

This exponential form naturally suggests a mirror-descent interpretation. We main-
tain a weight vector w(t) and apply the multiplicative update:

w
(t+1)
i ∝ w

(t)
i exp

(
−η (xi − x̄pop)

⊤ g(t)
)

(MWU)

where g(t) =
∑n

i=1w
(t)
i xi − x̄pop represents the current moment error and η > 0 is the

learning rate.

2.3 Algorithm Variants

Our framework supports multiple operational modes:

• Batch mode: Updates use the complete dataset X at each iteration.

• Streaming mode: Applies exponential updates to mini-batches, cycling through the
data over multiple epochs.

• Adaptive mode: Continues from current weights when targets change, avoiding
restart costs.

Data: Covariates X ∈ Rn×d, targets x̄pop, learning rate η
Result: Balanced weights w
Initialize w

(0)
i = 1/n for all i;

for t = 0, 1, . . . , T − 1 do

Compute moment error: g(t) =
∑n

i=1w
(t)
i xi − x̄pop;

for i = 1, . . . , n do

w
(t+1)
i = w

(t)
i exp

(
−η(xi − x̄pop)

⊤g(t)
)
;

end

Normalize: w(t+1) ← w(t+1)/
∑

j w
(t+1)
j ;

end
Algorithm 1: Multiplicative Weights Update for Entropy Balancing

2.4 Theoretical Properties

The MWU algorithm provides no-regret guarantees with convergence rate Õ(1/
√
T ) under

standard mirror-descent analysis (Arora et al., 2012). Specifically, the cumulative regret
satisfies:
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T∑
t=1

〈
g(t), w(t) − w∗〉 ≤ log n

η
+

ηTB2

2
(3)

where w∗ is the optimal entropy balancing solution and B bounds the moment con-
straint violations.

3 Experimental Results

3.1 Simulation Setup

We evaluate our approach using synthetic datasets with the following configuration:

• Sample size: n = 3000

• Covariates: d = 10 (standard) and d = 100 (high-dimensional)

• Covariate generation: i.i.d. N (0, I), then scaled

• Population targets: x̄pop sampled uniformly from [−0.3, 0.3]d

We compare four algorithmic approaches:

1. BFGS: Classical entropy balancing via quasi-Newton optimization

2. Batch MWU: Full dataset updates at each iteration

3. Streaming MWU: Mini-batches of size 50 over 10 epochs

4. Adaptive MWU: Target shift after 5 epochs, continued optimization

3.2 Results

Table 1 presents performance comparisons across different scenarios and dimensionalities.

Table 1. Performance comparison of entropy balancing methods

Scenario L2 Error Time (s) Comments

BFGS (d = 10) 0.0000 0.008 5 iterations
Batch MWU (d = 10) 0.0000 0.004 50 iterations
Streaming MWU 0.0042 0.022 10 passes
Adaptive MWU (shift) 0.0028 0.020 smooth adaptation
BFGS (d = 100) 0.0001 1.184 44 iterations
MWU (d = 100) 0.0000 0.081 200 iterations
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3.3 Key Findings

The experimental results demonstrate several important advantages of the MWU approach:

• Accuracy preservation: MWU achieves comparable or superior accuracy to classical
BFGS optimization.

• Scalability gains: In high-dimensional settings (d = 100), MWU provides order-of-
magnitude speedups while maintaining accuracy.

• Adaptive capability: When targets shift mid-optimization, MWU continues seam-
lessly without restart penalties.

• Streaming compatibility: Mini-batch processing maintains reasonable accuracy
with controlled computational overhead.

4 Discussion and Conclusions

4.1 Practical Implications

Our MWU-based entropy balancing framework addresses critical limitations of classical ap-
proaches:

• Flexibility: Handles target changes without restarting optimization procedures.

• Scalability: Runtime complexity scales linearly in both sample size n and dimension-
ality d, avoiding expensive matrix inversions.

• Streaming readiness: Identical exponential updates work effectively in both mini-
batch and online settings.

• Interpretability: Maintains strictly positive weights with intuitive learning rate con-
trol via η.

4.2 Future Directions

Several extensions merit investigation:

• Adaptive learning rate schedules for improved convergence

• Integration with modern automatic differentiation frameworks

• Application to complex survey designs with hierarchical constraints

• Extension to inequality moment constraints
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4.3 Conclusion

MWU provides a practical, theoretically grounded alternative to classical entropy balancing
when adaptivity, streaming data processing, or high-dimensional covariates are important
considerations. The method’s simplicity, combined with strong theoretical guarantees and
empirical performance, makes it an attractive tool for modern survey research and causal
inference applications.
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