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Abstract

How good are the public services and the public infrastructure? Does their quality
vary by income? These are vital questions—they shed light on how well the government
is doing its job, the consequences of disparities in local funding, etc. But there is little
good data on many of these questions. We fill this gap by describing a scalable method
of getting data on one crucial piece of public infrastructure: roads. We assess the quality
of roads and sidewalks by exploiting data from Google Street View. We randomly sample
locations on major roads, query Google Street View images for those locations and code
the images using Amazon’s Mechanical Turk. We apply this method to assess the quality
of roads in Bangkok, Jakarta, Lagos, and Wayne County, Michigan. Jakarta’s roads have
nearly four times the potholes than roads of any other city. Surprisingly, the proportion of
road segments with potholes in Bangkok, Lagos, and Wayne is about the same, between
.06 and .07. Using the data, we also estimate the relation between the condition of the
roads and local income in Wayne, MI. We find that roads in more affluent census tracts
have somewhat fewer potholes.

*Data and scripts behind the analysis presented here can be downloaded from https://github.com/
geosensing/streetsense.
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The poorer the quality of the public infrastructure and public services, generally, the
worse the quality of life. For instance, potholed roads mean that vehicles can’t go as fast and
the ride is bumpier. If sidewalks aren’t paved, physically disabled have a tough time getting
anywhere. If garbage isn’t picked up regularly, foul smells and unsightliness are part of life,
and the risk of disease is greater.

As these examples convey, the quality of public infrastructure and public services matters
immensely. It sheds light on the quality of life, and on the resources and functioning of the
government. So how good is the public infrastructure? And how good are the public services?
More often than not, we have no good answer to these questions.

In this paper, we introduce a method to answer questions about the quality of one impor-
tant piece of public infrastructure: roads. We capitalize on Google Street View to learn about
the condition of the roads. We randomly sample locations on the roads, get Google Street
View images for those locations, and crowdsource the coding of the images. To illustrate the
method’s utility, we apply the method to learn about the condition of roads in Wayne (Michi-
gan), Bangkok, Lagos, and Jakarta, and to assess the association between local income and the
condition of the roads in Wayne. We also discuss ways this labeled data can be augmented and

used to build automated systems to answer these questions at scale.

Learning From Google Street View

Since 2007, Google has been working on regularly taking panoramic images of all the streets
in the world. In the West, Google’s efforts have been a success: Google’s specially designed
vehicles have traversed an overwhelming majority of the streets.! In the third-world, however,

the coverage is patchy. For instance, as we show below, just about 24.6% of Dhaka’s streets

!See https://en.wikipedia.org/wiki/Coverage of Google Street View
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are covered by Google Street View.> But Google’s coverage of some other big third-world cities
isn’t too shabby. For instance, it covers 99.9% of Bangkok’s streets and 87.2% of Lagos’ streets.
In all, the coverage is good enough, especially in the West, that people can build a scalable
measurement infrastructure on top of it.

But patchy coverage is not the only problem with Google Street View data. The other is
that the data are not always current. A large chunk of the data is at least a few years old. But
somewhat older data has its value, especially because we expect Google to map those areas
again in the future. The data aren’t perfect but they are rich and valuable.

But how do we efficiently capitalize on Google Street View data? We could download
all the data for a city. But doing so is expensive. And it may not even be useful. Depending on
the question, a large random sample can fill in nicely for a census. For learning the condition
of the roads, that is precisely the case.

To efficiently learn about the condition of the streets, sidewalks, and such, from Google
Street View data, we devise a new workflow. We start by downloading data on the kinds of
roads we are interested from Open Street Map (OSM). We then chunk the roads into half a
kilometer segments, and then randomly sample from the segments. (The open source Python
package geo-sampling (Laohaprapanon and Sood 2017) implements this workflow.) We then
take the starting latitude and longitude of the sampled segments and query the Google Street

View APIL.

Application

To illustrate the utility of the method, we apply it to learn the condition of the roads, the
condition of the sidewalks, and the presence of litter on the streets in four prominent third-

world cities and one poor American county.

2Some of Google’s estimates of its coverage are either wrong or have become outdated as the road network
continues to grow.
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To learn the condition of roads in Bangkok, Dhaka, Jakarta, Lagos, and Wayne, MI, in
the latter half of 2017, we downloaded data on all the streets from OSM. We feared that in
many of these cities, Google Street View’s coverage of neighborhood roads would be patchy.
So we decided to focus on primary, secondary, tertiary, and trunk roads. We used the geo-
sampling package to take a random sample of primary, secondary, tertiary, and trunk road
segments for each location (see Figures 1, 2, 3). (Figures SI 2.1, SI 2.2, SI 2.3, SI 2.4 plot
the starting longitude and latitude without the surrounding detail of the sampled segments
of Bangkok, Jakarta, Lagos, and Wayne, MI respectively.) For Bangkok, Dhaka, Jakarta, and
Lagos, we drew a sample of 1,000 segments each. For Wayne, MI, we drew a sample of 5,000
segments. We drew a larger sample for Wayne, MI because we wanted to estimate the re-
lationship between local income and road conditions there. (We chose an American county
to estimate the relationship between local income and road conditions because data on local

income is readily available for the US.)
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Figure 1: Sampled Locations in Bangkok
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Jakarta, Indonesia

Figure 2: Sampled Locations in Jakarta
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Figure 3: Sampled Locations in Lagos
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Figure 4: Sampled Locations in Wayne

Wayne, Michigan, US
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Next, we used the Google Street View API to download images at the starting point

of each of the random road segment. Sometimes the Google API came back empty. We take

the proportion of failed queries as an estimate of Google Street View coverage of the primary,

secondary, tertiary, and trunk roads in the respective city. In Dhaka, for instance, just about

24.6% of queries were successful. (Figure SI 1.1 plots the sampled locations.) Given the low

coverage of Dhaka, we dropped Dhaka. In all, we have images of 978 locations for Bangkok,

872 for Jakarta, 999 for Lagos, and 4,828 for Wayne. Each photo captures a small segment of

the road. (All the photos are available on Harvard Dataverse.)

Next, we recruited workers on Amazon’s Mechanical Turk (MTurk) to code the images

for the condition of the roads. To ensure quality, we only recruited ‘master’ workers. We asked
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them if the segment of the road in the image had any 1) cracks, and 2) potholes. We also asked
them, "if there are any road markings on the road, are they clear?" Lastly, we asked them, if
there any litter and if the sidewalks were paved. The final survey for Bangkok, Jakarta, and
Wayne, MI was the same (see SI 3.1).> Lagos’ survey differed in very minor ways from Bangkok,
Jakarta, and Wayne’s (see SI 3.2). We paid MTurkers 5 cents for answering the short survey
for each image. To ensure quality, we also checked a few images at random to see if the coding
was reasonable. We found one instance where one worker’s judgments seemed really off and

decided to reject those HITs.

Results

Lest the readers miss an obvious point, before we present the results, we would like to draw
their attention to it. Differences in the quality of roads across cities do not by default capture
the extent of the road network. The extent of road network is easy to compute and regularly
cited. Our contribution is measurement of quality of roads, sidewalks, and litter on the streets
efficiently.

The proportion of road segments with potholes is Jakarta is an astonishing .23. The
commensurate number for Bangkok, Lagos, and Wayne is between .06-.07. But what does
that mean? As we mentioned above, each image captures a small segment of the street. If we
assume that a photo captures .5km, the expected number of potholes on a 10 km journey in
Jakarta would be 2.3. That would make for a somewhat of a rough ride.

When it comes to cracks in the road, Wayne takes the top spot—the proportion of seg-
ments in Wayne with cracks is .62 followed by .44 for Jakarta and .20 and .24 for Bangkok
and Lagos respectively. The high proportion is not particularly noteworthy for Wayne given its

latitude, but it is noteworthy for Jakarta.

3We initially got Jakarta’s images coded using alternate instrumentation (see SI 3.3). But we were concerned
that this would lead to incommensurability. So we did another round of data collection with the same instrument.



Jakarta is also the dirtiest of the 4 cities with .21 of the segments containing litter. Lagos
comes second with .15 of the segments with litter. Lagos also takes the bottom spot for paved

sidewalks—just .30 of the segments have a paved sidewalk.

Table 1: Condition of the Roads in Different Places.

city potholes cracks clear road markings roads w/ markings litter paved sidewalk
bangkok .06 .24 .81 .98 .06 .51
jakarta .23 44 .34 .97 21 .49
lagos .06 .20 .23 .95 .15 .30
wayne .07 .62 .60 .90 .09 .67

Given there are differences across cities in the proportion of trunk, primary, secondary,
and tertiary roads in the road network, we checked if cross-city comparisons are mostly cap-
turing differences in road types than differences in conditions within each type of road. To
examine this, we regressed the appropriate variable (whether or not there is a pothole, a crack)
on the type of the road and city. Compared to tertiary roads, potholes are more common on
primary roads (Diff. = .03), secondary roads (Diff. = .01), and trunk roads (Diff. = .05). But
adjusting for the type of road doesn’t change the across-city estimates much. For instance, the
difference in the proportion of segments with potholes between Wayne and Jakarta is still .16.

Moving to cracks in the road, compared to tertiary roads, primary, secondary, and trunk
roads have fewer cracks with differences being -.05, -.03, and -.09 respectively. Like with pot-
holes, adjusting for the kind of roads doesn’t seem to make much of a difference for inferences
from raw data for cross-city comparison.

Next, we analyzed the relationship between the condition of the roads and local income.
To do that, we used the AskGeo API to get information on per capita income the census tract
in which the lat/long lay. And we regressed whether a segment had a crack (or a pothole) or
not on income split into quintiles.

Before we present the results, a caveat. Given that we expect the largest relationship

between quality of neighborhood roads and local income, we expect that our subsetting on
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primary, secondary, tertiary, and trunk roads to lead to smaller coefficients.

Compared to road segments in tracts with per capita income less than 12k, the propor-
tion of road segments with potholes in tracts with per capita income between 12k and 17k
was -.01 less. The proportion of road segments in tracts with per capita income of 17k to 23k
was -.02 less. For tracts with 23k and 29k, it was -.03 fewer segments with potholes, and for
tracts with income between 29k and 83k, -.02 fewer segments had potholes. The relationship
between local income and the proportion of segments with cracks was more uneven. The high-
est quintile had the fewest cracks but roads in the second and third income quintile areas had

roughly the same number of cracks.

Discussion

What is the condition of the streets? Are the streets paved? Do the streets have proper traffic
signs and road markings? Is there litter on the streets? What proportion of vehicles on the
streets is two-wheeled? And what proportion is man-powered, e.g., rickshaws? These are
some of many the questions we can answer with Google Street View. In this paper, we provide
a scalable way to answer such questions. We capitalize on Google Street View, pairing it with an
open source Python package to randomly sample locations on the streets and crowdsourcing,
to learn a host of compelling facts.

The method that we describe here can be easily extended to automate the production of
answers. Given that we are technically building a large labeled dataset, an obvious next step
is to build a supervised machine learning infrastructure on top of it. Such an infrastructure
can then provide automated estimates on many of these questions, along with useful caveats

around coverage.

10
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SI1 Sampled Locations in Dhaka

Figure SI 1.1: Sampled

Locations in Wayne
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SI 2 Plots of Sampled Locations
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SI 3 Mturk Surveys

Figure SI 3.1: Screenshot of the Bangkok, Jakarta, and Wayne Questionnaire

Google

Does the road have any...?

[J Cracks
[J Potholes

Do you see any of the following?

[ Litter
[J A paved sidewalk

Road markings are painted marks on the road to guide traffic, e.g. pedestrian crossing, lane dividers, etc.

If there are any road markings, are they clear?
O Yes
O No
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Figure SI 3.2: Screenshot of the Lagos Questionnaire

Does the road have any...?

Cracks
Potholes

Do you see any of the following?

Litter
A paved sidewalk

The photo is from google street veiw. Portions of the image may be blurred to preserve privacy. Road markings are painted marks
on the road to guide traffic, e.g. pedestrian crossing, lane dividers, etc.

If there are any road markings, are they clear?
Yes

No

The photo is from Google Street Veiw. Google blurs portions of the image to preserve privacy.
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Figure SI 3.3: Screenshot of the First Jakarta Questionnaire

Road markings are painted marks on the
road to guide traffic, e.g. pedestrian
crossing, lane dividers, etc.

Are the road markings clear?

Are there any potholes in the road?

Are there any cracks in the road?

Yes
No

No road markings

Yes
No

Yes
No
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