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Abstract

Randomized encouragement designs often feature imperfect compliance. Local average
treatment effects (LATE) identify causal effects under random assignment, exclusion, and
monotonicity. These conditions imply a strong distributional consequence: when the in-
strument flips, only compliers can move the outcome distribution. This paper turns that
consequence into a practical specification test based on equalities of distribution functions.
We identify complier marginal outcome distributions using Abadie-style weights and esti-
mate them with cross-fitting when covariates are present. We enforce valid CDF shape
by monotone rearrangement and truncation. We then test the identity with a uniform
Kolmogorov—Smirnov or Cramér-von Mises statistic and a complementary overidentified
GMM moment test with robust covariance. We also give a falsification placebo based on
predicted noncompliance. Simulations show correct size and useful power against exclusion
violations and defiers. Code and replication tables are provided.

1 Introduction

Many randomized encouragement designs have imperfect compliance. Only a fraction of units
take up treatment when encouraged. Examples include phone-bank get-out-the-vote campaigns
and draft lotteries. Instrumental variables identify the local average treatment effect under
three conditions: random assignment, exclusion, and monotonicity [Imbens and Angrist, 1994,
Angrist et al., 1996]. Exclusion encodes a simple idea. The instrument changes outcomes only
through treatment. In a GOTV setting, assignment that never reaches a person should not shift
turnout or downstream outcomes. In a draft lottery, a low number should matter for outcomes
only through service.

These conditions imply a sharp distributional consequence. When the instrument Z changes,
only compliers change treatment status. As a result, only compliers can move the outcome
distribution. Let Fy|z—, denote the distribution of the observed outcome Y under assignment
z. Let pc be the share of compliers. Let Fi¢o and Fyc denote the complier potential-outcome
marginals for Y (1) and Y (0). Under the LATE assumptions,

Fy1z-1(y) — Fy|z=0(y) = pc (Flc(y) - Foc(@l)) for all y € R.

This equality states that the entire population shift in the outcome distribution across assign-
ment equals the treated-versus-control shift among compliers, scaled by the complier share.

This paper develops a specification test of that consequence which can sit alongside con-
ventional IV estimation. We identify the complier marginals using Abadie-style weighting
[Abadie, 2002, Abadie, 2003]. We implement estimation with cross-fitting when covariates are
present [Chernozhukov et al., 2018] and enforce valid CDF shape with monotone rearrangement
[Chernozhukov et al., 2009]. We then test the identity over the full outcome support using uni-
form Kolmogorov—Smirnov or Cramér—von Mises statistics and a complementary GMM moment
test with robust covariance. We also provide a falsification placebo that targets regions with
near-zero predicted compliance.

*See https://github.com/finite-sample/late_iv


https://github.com/finite-sample/late_iv

2 Related work

Three strands are closest and clarify how our approach differs.

Distributional tests among compliers. Abadie identifies and estimates complier outcome dis-
tributions and provides bootstrap tests for distributional hypotheses within the complier group
[Abadie, 2002, Abadie, 2003, Abadie et al., 2002]. Those tests ask whether treatment shifts the
complier distribution. We answer a different question. We reconcile the population CDF shift
across assignment with the complier treated-versus-control shift scaled by the complier share.
We therefore test a global identity that must hold under the LATE conditions rather than a
within-compliers difference.

Inequality-based wvalidity tests. Huber and Mellace derive inequality moment constraints
implied by the LATE assumptions and provide tests based on those inequalities. Laffers studies
sharpness of such implications [Huber and Mellace, 2015, Laffers, 2017]. Our approach targets
a different implication. We test an equality of distribution functions over the full outcome
support.

FExogeneity tests. Kitagawa proposes a specification test for instrument validity that exploits
nonnegativity implications for complier densities and uses a variance-weighted Kolmogorov—
Smirnov statistic. Mourifié and Wan develop tests for LATE assumptions [Kitagawa, 2015,
Mourifié and Wan, 2017]. Our test compares the observed CDF shift across assignment to the
shift implied by complier marginals and the complier share. The two approaches are comple-
mentary.

3 Setup and consequence

Units are ¢ = 1,...,n. The instrument is Z € {0,1}. Treatment is D € {0,1}. The outcome is
Y € R. Potential treatment is D(z). Potential outcomes are Y (d).

The analysis uses four conditions. Assignment is random. Exclusion holds so that assign-
ment affects outcomes only through treatment. Monotonicity holds so that there are no defiers.
SUTVA holds.

Define the complier share

pe = Pr{D(1) > D(0)} = E[D | Z=1] - E[D | Z=0].

Let Fyz—. be the distribution of Y when Z = z. Let Fic and Fyc denote the complier
potential-outcome marginals for Y (1) and Y (0).

Proposition 1 (Only compliers move). Under random assignment, exclusion, and monotonic-
ity, the following equality holds for all real y:

Fyiz-1(y) — Fyjz=0(y) = pc(Fic(y) — Foc(y)).

The proof decomposes the outcome distributions by principal strata and uses exclusion to
remove terms for always takers and never takers. The complier term remains and is scaled by

pC-
4 Identification and estimation

The complier marginals are identified without joint rank assumptions. Let X denote observed
covariates. Define

e(X)=Pr(Z=1]X), p(X)=ED|Z=2X], pc=E[p(X)—po(X)].



For any measurable function g,

E[g(V) 5 (D = po(X)) |

E|g(Y) e (01(X) - D)]
E[g(v(1) | €] = oy o) = e D))

pc pc
Choosing indicator kernels g,(u) = 1{u < y} yields the complier CDFs Fi¢ and Fyc. In a pure
randomized trial without covariates, e = % and p, reduces to group means.

Estimated complier CDFs must be valid distribution functions. After computing the weighted
CDF curves, apply monotone rearrangement on a fine grid and truncate to the unit inter-
val [Chernozhukov et al., 2009]. This step enforces monotonicity and proper range and affects
finite-sample shape only.

All first-stage nuisance functions are estimated with cross-fitting when covariates are present
[Chernozhukov et al., 2018]. Nuisance functions are fit on training folds and applied to held-
out folds. This stabilizes inference for the weighted empirical processes that define the complier
CDFs.

5 Two tests of the consequence

5.1 Uniform distributional test

Define the estimated difference
A(y) = FY|Z:1(?J) - FY\Z:U(Z/) — pc (Fw(y) - Foc(y))'

Test the null that A equals zero for all y. Use either the Kolmogorov—Smirnov statistic
T = sup, |A(y)| or the Cramér—von Mises statistic Ty = J A(y)2dH(y), where H is a pooled
empirical measure on a fine grid. With covariates, obtain critical values using a multiplier boot-
strap that respects cross-fitting. Generate mean-zero unit-variance multipliers and reweight
held-out contributions while keeping fold-specific nuisance functions fixed. The bootstrap de-
livers critical values for the uniform statistics.

5.2 GMM moment test

Proposition 1 implies a family of unconditional moments. For any bounded function g,
Elg(Y) | Z=1] - E[g(Y) | Z=0] — pc(E[g(Y (1)) | C] - E[g(Y(0)) | C]) = 0.

Select a dictionary of indicator functions g;(y) = 1{y < t;} at prespecified cutpoints {tj}}']:r
Stack the moments into a vector m. Use the robust GMM J-test

T; = nm! W™ lm

with a heteroskedasticity-robust sandwich covariance W. This test targets specific regions of
the distribution when the cutpoints are chosen in the tails.

5.3 Placebo falsification with predicted noncompliance

Define the compliance propensity ¢(X) = p1(X) — po(X). In regions where ¢(X) is close to
zero, the instrument should have no effect on outcomes if the LATE conditions hold. Estimate
¢(X) with cross-fitting. Define a smoothed weight w(X) = K((é(X) — 7)/h) for a kernel
K and bandwidth h. Test that the conditional mean difference of Y across Z equals zero
when averaged with weights w,(X). Construct a max test over a grid of thresholds and use a
multiplier bootstrap to obtain critical values. This falsification probes exclusion in parts of the
covariate space that have near-zero compliance.



6 Inference guidance

Report the complier share po. When p¢ is very small, the variance of the weighted complier
estimators is large and the uniform test may have low power. In that case emphasize the placebo
falsification and report randomization checks. In trials with known assignment, randomization
inference is attractive. In observational encouragement designs rely on cross-fitting and the
multiplier bootstrap.

7 Simulation study

The simulation study evaluates size and power for the uniform Cramér—von Mises test and for
the GMM moment test with ten indicator cutpoints. The first block focuses on a randomized
trial without covariates. The second block adds covariates and cross-fitted nuisance functions.

7.1 Design without covariates

Principal strata are generated with shares that sum to one. Assignment is Bernoulli with rate
one half. Potential treatment equals type rules. The baseline outcome Y (0) is standard normal.
Complier treatment effects are normal with mean 0.5 and standard deviation 0.4. Observed
outcomes equal Y (D).

The study considers a null that satisfies LATE. It then considers exclusion violations that
add a direct effect vZ to Y for noncompliers. It also considers monotonicity violations created
by a positive mass of defiers. The sample size is two thousand unless noted. Critical values are
estimated under the null by Monte Carlo and then held fixed to evaluate size and power.

Table 1: Size and power at five percent. Two hundred fifty replications per
row. Critical values estimated from four hundred null draws.

Scenario pe Alt T, mean T5 SD Reject T, Reject Ty
Null 0.30 mnone 0.000571 0.000543 0.056 0.056
Null 0.10 mnome 0.000795 0.000665 0.056 0.052
Exclusion v = 0.2 0.30 excl 0.000779 0.000593 0.100 0.092
Exclusion v = 0.5 0.30 excl 0.007091 0.002006 1.000 1.000
Defiers five percent 0.30 def  0.000968 0.000690 0.140 0.132
Defiers ten percent 0.30 def  0.001470 0.000943 0.312 0.336

Two further checks vary sample size and complier share.

Table 2: Sensitivity to sample size and complier share.

Scenario n pc  Tb mean T5 SD Reject T;  Reject T
Exclusion v = 0.2 1000 0.30 0.000992 0.000913 0.060 0.064
Exclusion v = 0.2 4000 0.30 0.000580 0.000363 0.084 0.088
Defiers five percent 2000 0.10 0.001518 0.001014 0.180 0.176
Defiers five percent 2000 0.50 0.000562 0.000552 0.080 0.076

The uniform test holds size near five percent under the null. Power rises with the strength
of the violation. Exclusion effects of moderate size are detected reliably at larger n. The tests
also detect monotonicity violations and become more powerful as the mass of defiers grows.

7.2 Design with covariates

The covariate design adds a vector X that shifts both compliance and potential outcomes.
The conditional compliance rate p1(X) — po(X) depends on X through a logistic index. The
baseline outcome Y (0) depends on X through a linear index and a sine term. The complier
effect distribution is the same as above. All first-stage functions are estimated with cross-fitting.



The uniform test uses a multiplier bootstrap with fold-locked nuisance functions. The placebo
falsification uses a kernel weight on predicted noncompliance and a max test over a grid of
thresholds.

The results show size near five percent under the conditional LATE null. The uniform test
and the GMM test detect exclusion violations that create conditional mean differences in regions
with near-zero compliance. The placebo falsification has high power in those regions. Detailed
tables and code are included in the replication files.

8 Practice recommendations

Report the complier share. When it is small, emphasize falsification in low-compliance regions
and randomization checks. Enforce valid shape for the complier CDFs through rearrangement
and truncation. Use cross-fitting for all nuisance estimates. Use robust covariance in the GMM
test. Prefer the uniform test when the research question is global movement of the outcome
distribution. Use the GMM test to probe specific parts of the distribution. Visualize both sides
of the identity by plotting the two CDF differences with uniform bands.

9 Conclusion

The LATE assumptions imply a simple and powerful consequence: only compliers move when
the instrument flips. The paper provides identification, estimators, and tests that turn this
consequence into a practical specification check. The tests complement standard IV estimation
and give a distributional view that distinguishes between compliance-driven movement and
violations such as exclusion failures and defiers.
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